Measurement of GHGs CO₂, N₂O and CH₄

Suman George

AEGIS (Action on Emission of GHGs for Integrated Sustainability) Research Consortium

METEOROLOGICAL ORGANIZATION

26 October 2022 (WMO) - In yet another ominous climate change warning, atmospheric levels of the three main greenhouse gases - carbon dioxide, methane and nitrous oxide all reached new record highs in 2021,

Sur World's largest problems, Source: Climate Watch, the World Resources Institute (2020), Licensed under CC-BY by the author Hanneh Ritchia (2020),

Human sources of nitrous oxide

Human sources of methane

10%

UNFCCC RESOURCE GUIDE

MODULE 3: NATIONAL GREENHOUSE GAS INVENTORIES FOR PREPARING THE NATIONAL COMMUNICATIONS OF NON-ANNEX I PARTIES

gas-by-gas basis and in units of mass, estimates of anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)

N₂O emissions (direct & indirect)

- N₂O is produced naturally in soils through microbial processes of nitrification, denitrification
- Main controlling factor → N availability in the soil (depends on N inputs, including N released from mineralization of SOM)
- Direct & indirect emissions of N₂O from managed soils occur
- N inputs include: Synthetic and organic fertilizer & N mineralisation associated with land use and/or management change
- Direct N₂O emissions from mineral soils are estimated when SOM is lost through oxidation, due to land-use or land management changes and this loss is accompanied by a mineralisation of N (F_{SOM})
- Indirect N₂O emissions occur through 2 pathways: volatilisation & leaching/runoff. Under tier 1, only indirect N₂O emissions from N leached resulting from mineralization of SOM associated with land use/management changes

N₂O emissions (direct &

TABLE 11.1 DEFAULT EVESSION FACTORS TO ESTIMATE DIRECT N ₂ O EMISSIONS FROM MANAGED SOILS			
Emission factor	Default value	Uncertainty range	
EF_1 for N additions from numeral fertilitiers, organic anomdiments and crop residues, and N numeralised from numeral soil as a result of loss of soil carbon [kg N ₂ G-N (kg N) ⁴]	0.01	0.003 - 0.03	
EFing for flooded rice fields [kg N/O+N (kg N) ⁻¹]	0.603	0.000 - 0.004	

To convert kg of N₂O-N emissions into tonnes of N₂O emissions, the result of equation 11.1 needs to be multiplied by 44/28 and by 10⁻³

From: The net annual amount of N mineralised in mineral colls as a result of loss of SOC associated with change in land use and/or management system of practices, kg N. 2C_{Menter} SOM exidised in mineral soils as a consequence of land use and/or management change. This term is calculated by applying the methodology described in previous slides for estimating SOC changes, t.C. B. The C:N ratio of the soil organic matter.

The IPCC default value is **15** for forest land/grassland conversion to cropland & **10** for management changes in cropland

N₂O emissions (**k indirect**)

⁽the national GHG inventory for land use)

CH₄ emissions

- CH₄ emissions from mineral soils occur on Inland Wetland Mineral Soils (IWMS) that are rewetted (e.g., for cultivation of crops)
- Management activities that alter the water table on lands containing IWMS can impact CH₄ emissions^{*}
- IWMS are aquic soils (USDA) or gleysols (World Reference Base), having restricted drainage, leading to periodic flooding and anaerobic conditions
- Only 2013 IPCC Wetlands Supplement provides default methodology for estimating CH₄ emissions from IWMS
- Recall that CH₄ emissions from rice cultivations are reported under the agriculture sector
- IWMS might occur in any of the six land-use categories

Source: 2006 IPCC Guidelines; FAO elearning academ (the national GHG inventory for land use)

 $CH_{4-IWMS} = \sum (A_{IWMS} \times EF_{CH_4-IWMS})_c$

2013 IPCC Supplement on Wetlands, chapter 5, Equation 5.1

Activity Data Emission Factor

 CH_{4-1WMS} : Annual CH_{4} emissions from managed lands on WMS where management activities have raised the water table level to or above the land surface, kg CH_{4} yr⁻¹. A_{3WMS} : Total area of managed lands with mineral soil where the water table level has been raised, ha. $EF_{CH_{4}-1WMS}$: Emission factor from managed lands with mineral soil where water table level has been raised, kg CH_{4} ha⁻¹ yr⁻¹ (<u>Table 5.4</u> of 2013 IPCC Supplement on Wetlands). c: Climate region.

Land representation

The area of managed lands with IWMS or dry mineral soil, where water table level has been raised, should be stratified by climate region

	TABLE 5.4 DEFAULT EMISSION FACTORS FOR CH ₄ FROM MANAGED LANDS WITH IWMS WHERE WATER TABLI LEVEL HAS BEEN RAISED				
	Climate Region	EFcnatwas (kg CH4 ba ⁻¹ yr ¹)	95% Confidence Interval ⁴	Number of Studies	
-	Boreal	76	±76 ⁸	1 ^C	
	Temperate	235	±108.	21	
	Tropical	900	±456	18	

AThe 95% confidence interval is calculated from the mean, standard deviation, and the critical values of the t-distribution, according to the degrees of freedom. These are not expressed as a percentage of the mean.

B Bridgham et al. (2006)

C This study (Bridgham et al., 2006) is a synthesis of istanerous studies, see publication for details.

IPCC OUTLINES A TIERED APPROACH FOR ESTIMATING GHG EMISSIONS

TIER 1 MULTIPLYING ACTIVITY DATA (AD) BY AN INTERNATIONAL DEFAULT FACTOR REPRESENTING EMISSIONS PER UNIT OF ACTIVITY

TIER 3

MORE DETAILED -FURTHER STRATIFICATION OF THE AD, AND EMISSION ESTIMATES, DIRECT MEASUREMENT, OR OTHER EQUIVALENT REGION-SPECIFIC APPROACHES. **TIER 2** APPROACHES GENERALLY INVOLVE THE APPLICATION OF A COUNTRY-SPECIFIC EMISSION FACTOR TO NATIONAL- OR REGIONAL-LEVEL AD;

How to ground truth the modelled information

Tier one - Multiplying activity data by an international default factor representing emissions per unit of activity.

Use a Tier 3 level tool to ground truth will be obviously very different

With Tier 1 – we are trying to generate a base map when there is none with intention to progress towards higher Tiers

Even then we need to develop the capability to ground truth for carbon offsetting/carbon trading, helping in the transition to higher tiers, this is also an opportunity to improve the model.

Emerging Approaches

Technologies: Soil spectroscopy

Source: Sanderman et al. 2020 SSSAJ

Why Measure CO₂, N₂O and CH₄

Control sites

Seconds

NEED OF THE HOUR: TANDEM GHG MRV WITH IMPLEMENTATION OF CLIMATE-SMART MITIGATION PROJECTS IN AGRICULTURE

MONITORING CLIMATE MITIGATION/ADAPTATION TARGETS THROUGH THE LIFE OF A PROJECT

BIG PICTURE SCIENCE: LEARNING FROM THE FEEDBACK LOOP

USUALLY DURING EXECUTION OF VARIOUS CLIMATE ADAPTATION/MITIGATION PROJECTS OPPORTUNITY FOR CONTINUOUS LEARNING AND R&D DEVELOPMENT IS MISSED.

CH₄ from GHGSTAT

The measurement of methane from space is a highly demanding task because the sources are usually small, compounded by the large vertical column from space to earth (>500 km),

MONITORING SMARTER AND NOT HARDER

TIER 3 LEVEL

LOWERING MONITORING UNCERTAINTY

- SMART SAMPLING
- STRATEGIC GROUND-TRUTHING
- IMPROVING MODEL
 OUTPUT
- MICROBIAL COMPONENT
 REMOTE SENSED
- SURROCATE VAR BLES ACCURATE BUT CHEAP

CITIZEN SCIENCE

A hyperspectral image multispectral remote sensing images to inform about sampling

Current Satellite Image classification takes long time

- Typical satellite image in "false colour" where red areas are forest and vegetation
- In Indonesia, assessors manually classify these images visually to areas of similar land cover
- It is difficult, slow work; hard to be consistent over time and between operators

SIS FOR LAND MONITORING

 SEPAL system can automatically classify the image into segments of similar types

Aston | - 6 23

Other bookmarks

- Much faster
- Most importantly much more consistent; across the whole country (no operator bias)
- Consistent through time over years

Stratification based upon prior information with data-driven sample selection

Woodwell Climate Research Centre Jonathan Sandemann

Picarro G2508 Analyzer – Portable in simultaneously measure nitrous oxide CH4), carbon dioxide (CO2), ammonia (H2O) –

PICARRO

CANTY RINGDOWN SPECTROMETER C2101-1 Bolopic CO.

Ĩ

3

Measurement precision

N2O: < 5 ppb precision in 5 i

CH4: < 5 ppb precision in 5 i

H2O: < 100 ppm precision in

Soil CO2 flux /concentration mapping

Evaluating spatial variation in soil CO2 flux across the Gorgon CO2 plume area on barrow island, western Australia

Surface CH4 survey (Winter) Latent

INTEGRATION WITH REMOTE SENSING

- Remote sensing does not measure quantity needed.
- Crucial role in development, calibration and validation.
- Applications from point to landscape to address research question
- Use of spectral indices of vegetation for productivity and ET.
- LiDAR for structure and biomass.
- Microwave for soil moisture, etc.

INTEGRATION WITH MODELLING

- Development, calibration and validation.
- DNDC + ORYZA
- Driven by gridded meteorology
- Strategically placing Model-data fusion to construct a consistent parameter set for model uncertainties.

Technology: modeling

- Markets & protocols are dominated by a handful of traditional models
- Next-gen models better represent modern C concepts
- Extremely high user skill requirements
- Debate over how to represent uncertainty
- Multi-model ensembles are still lacking
- Limited data for model training and validation

A main impetus for constituting the consortium is to bring the fragmented emissions research from institutional/country level to a regionally consistent, scientifically interrogated "package of practices" implemented at a regional scale

AEGIS aims to fill knowledge gaps for accurately quantifying GHG emissions when implementing some of the most promising mitigation options.

Action On Emissions of GHGs for Integrated

Food and Agriculture Organization of the United Nations

Bringing together key Strategic Research, Policy and End User Partners to define the barriers to progress in each area, integrate these policy/end user/science challenges into a coherent cross-discipline framework