

Fomento de la capacidad de Cuba sobre gases precursores y emisiones indirectas de CO₂ y N₂O del sector Energía

Martes 8 de julio de 2025

Introducción a la estimación de emisiones indirectas de CO₂ y N₂O del sector Energía

Paulo CORNEJO

Coordinador Regional CBIT-GSP UNEP-CCC paulo.cornejoguajardo@un.org

¿Qué nos dicen las MPG?

51. Cada Parte debería proporcionar información sobre los siguientes gases precursores: monóxido de carbono (CO), óxidos de nitrógeno (NO $_x$) y compuestos orgánicos volátiles distintos del metano (COVDM), así como óxidos de azufre (SO $_x$).

52. Cada Parte podrá notificar emisiones indirectas de CO_2 resultantes de la oxidación atmosférica del CH_4 , el CO y los COVDM. Las Partes que decidan notificar las emisiones indirectas de CO_2 deberán presentar los totales nacionales con y sin estas emisiones.

Cada Parte debería notificar, en forma de recordatorio, las emisiones indirectas de N_2 O derivadas de fuentes distintas de los sectores de agricultura y UTCUTS. Estas estimaciones de las emisiones indirectas de N_2 O no deberán incluirse en los totales nacionales.

Las Partes podrán proporcionar información sobre otras sustancias que incidan en el clima.

Carbono emitido en gases diferentes del CO₂

- La mayor parte del carbono emitido en forma distintas al CO₂ (CH₄, CO y COVDM) se oxida eventualmente a CO₂ en la atmósfera, y esta cantidad puede estimarse a partir de las estimaciones de emisiones de los gases no CO₂.
- En los NIR, los aportes de CO₂ debidos a la oxidación atmosférica de CH₄, CO y COVDM suele:
- Incluirse en algunas categorías de fuentes: actividades de combustión y suministro de combustibles fósiles aplicando la metodología por defecto del IPCC ya incluyen CO₂ indirecto.
- Excluirse correctamente en otras: varias fuentes de carbono biogénico.
- Deben estimarse por separado: emisiones fugitivas de la minería del carbón, petróleo y gas natural; algunos procesos industriales en los que utiliza carbono fósil como materia prima (dependiendo de los supuestos y métodos utilizados).

Aportes de CO₂ del metano de origen fósil

- Existen dos opciones para abordar los aportes de CO₂ provenientes de CH₄ de origen fósil.
- Si los países utilizan una métrica para el CH₄ que incluya los aportes de CO₂ del CH₄ de origen fósil (GWP y el GTP para metano fósil), no deben estimar por separado el CO₂ proveniente de la oxidación atmosférica del CH₄ de origen fósil para evitar el doble cómputo del impacto climático.
- Si se elige una métrica que no tenga en cuenta dicha conversión, se deben aplicar los métodos que se describen en las directrices del IPCC.
- Los países deben documentar de manera transparente qué opción se utilizó.

Table 8.A.1 |

Acronym, Common Name or Chemi- cal Name	Chemical Formula	GWP 100-year	GTP 100-year	
Carbon dioxide	CO ₂	1	1	
Methane	CH ₄	28	4	
Fossil methane‡	CH ₄	30	6	
Nitrous Oxide	N ₂ O	265	234	

Metodología para estimar emisiones indirectas de CO₂

- Las metodologías para calcular las emisiones indirectas de CO₂ son simples, y para los países que ya cuentan con inventarios detallados de CH₄, CO y COVDM, no debería ser necesario recolectar datos de actividad adicionales .
- Los aportes de CO₂ a la atmósfera se calculan convirtiendo las emisiones estimadas previamente de CH₄, CO o COVDM, con base en el contenido de carbono de cada gas.
- Los compiladores de inventarios deben evaluar cada categoría para asegurarse de que este carbono no esté ya contemplado en los supuestos utilizados al estimar las emisiones de CO₂.
- La Tabla A7.1 del R2019 presenta una lista de categorías relevantes para la estimación del CO₂ de de la oxidación atmosférica. Al identificar las categorías, es una buena práctica evitar tanto el doble cómputo como la omisión de carbono emitido como CO₂.
- Las emisiones indirectas de CO₂ se pueden calcular a partir de las emisiones de CH₄, CO y COVDM.

Metodología para estimar emisiones indirectas de CO₂

Los principios básicos del cálculo son:

- De CH₄: AportesCO₂ = EmisionesCH₄ FO 44/16
- De CO: AportesCO₂ = EmisionesCO FO 44/28
- De COVDM: AportesCO₂ = EmisionesCOVDM C FO 44/12

Donde:

- AportesCO₂ son los aportes adicionales de CO₂ por la oxidación de CH₄, CO y COVDM que no se contabilizan ya en otras categorías.
- EmisionesCH₄, EmisionesCO y EmisionesCOVDM son las estimaciones de emisiones tomadas de otras categorías relevantes.
- C es la fracción de carbono en los COVDM en masa (valor por defecto = 0.6 para uso de disolventes y 0.85 para otras categorías de fuentes).
- FO es el factor de oxidación del carbono a dióxido de carbono como fracción. El valor predeterminado es 1.

Ejemplo de estimación de emisiones indirectas de CO₂

Gas	Enorgia	IPPU	Agricultura	итситѕ	Residuos	Total	Emisiones indirectas de CO2			
	Energía						C en gas	FO	CO2 en C	CO2(i)
CH4	214,4	1,2	NA	NA	603,8	819,4		1,0	2,8	2.253,4
СО	1.068,6	135,7	NA	NA	28,4	1.232,7		1,0	1,6	1.937,1
NMVOC	188,9	424,7	NA	NA	8,8	622,5	0,6	1,0	3,7	1.369,4
NOx	607,0	7,6	NA	NA	1,8	616,4		1,0		
NH3	6,2	3,1			23,3	32,7		1,0		
TOTAL										5.559,9

Otras consideración para los COVDM y la incertidumbre

- El contenido de carbono en los COVDM variará dependiendo de la fuente. Un inventario basado en la especificación de los COVDM proporciona resultados más exactos.
- Para estimar los aportes de CO₂ a partir de los COVDM, se pueden seguir los siguientes pasos:
 - Separar la porción de emisiones de los COVDM de los materiales biogénicos y del petróleo u otros productos fósiles.
 - Identificar la fracción de emisiones de los COVDM de origen fósil correspondiente a energía e IPPU (Tabla A7.2).
 - Para la porción de estas emisiones de los COVDM derivadas del uso de disolventes, determinar el contenido promedio de carbono con un perfil de especiación química (Tabla A7.3). Si no se dispone de información, asumir un valor predeterminado de 60 % y un contenido promedio de 85 % para el resto.
- Existe incertidumbre científica respecto al grado en que todo el CH₄ y los COVDM se oxidan completamente a CO₂ en la atmósfera. Para las emisiones de CO, esta suposición conlleva muy baja incertidumbre, se asume que el 95 % del CH₄ emitido se oxida (rango de 51 % a 100 %).

Emisiones indirectas de N₂O de NO_x y NH₃

- Las emisiones directas de N₂O se estiman sobre la base de las entradas de N neto inducidas por el hombre en los suelos gestionados o de otros cambios en el N inorgánico del suelo.
- Las emisiones indirectas de N_2O se producen como consecuencia de dos vías diferentes de pérdida de nitrógeno son: (1) la volatilización/emisión, y (2) la lixiviación y el escurrimiento.
- La deposición en los suelos y en las aguas de estos compuestos de N reactivos procedentes de fuentes no AFOLU produce emisiones de N₂O de forma exactamente análoga a las que se producen como consecuencia de su deposición a partir de fuentes AFOLU.
- Por lo tanto, las emisiones indirectas de N₂O resultantes de estas diversas fuentes se incluyen en las directrices del IPCC partiendo de la hipótesis de que se aplica el mismo factor de emisión a la deposición del suelo y del agua.

Metodología para estimar emisiones indirectas de CO₂

- Todas las emisiones antropogénicas de NH₃ o NO_x son fuentes potenciales de emisiones de N₂O.
- En general, el Capítulo 10 y 11, vol. 4 de las directrices del IPCC presentan una orientación específica para estimar las emisiones indirectas de N₂O resultantes de suelos agrícolas.
- La sección 7.3, cap. 7, vol. 1 ofrece una orientación para estimar las emisiones indirectas de N_2O procedentes de la deposición atmosférica de los compuestos de N de todas las demás fuentes de emisiones de NO_x y NH_3 , como la combustión de combustible, los procesos industriales y el quemado de residuos de cultivos y desechos agrícolas.
- Solamente debe aplicarse el método en los casos en los que hay disponibles emisiones de NO_x y NH_3 de estas fuentes, p. ej., de los inventarios de gases precursores.
- Este método supone que el país que produjo las emisiones originales de NO_x y NH_3 declara las emisiones de N_2O de la deposición atmosférica.

Metodología para estimar emisiones indirectas de N₂O

$ECUACIÓN \ 7.1$ EMISIONES DE N_2O DE LA DEPOSICIÓN ATMOSFÉRICA DE NO_x Y NH_3

$$N_2 O_{(i)} = \left[\left(N O_x^- N_{(i)} \right) + \left(N H_3^- N_{(i)} \right) \right] \bullet EF_4 \bullet 44 / 28$$

Donde:

 $N_2O_{(i)}$ = N_2O producido por la deposición atmosférica del N procedente de las emisiones de NO_x y NH_3 de la fuente i, de Gg

 $NO_x-N_{(i)}$ = Contenido de nitrógeno de las emisiones de NO_x de la fuente *i*, partiendo de la hipótesis de que se declara el NO_x en equivalentes de NO_2 (Gg NO_x-N o Gg $NO_2 \cdot 14/46$)

 $NH_3-N_{(i)} = Contenido de nitrógeno de las emisiones de <math>NH_3$ de la fuente i (Gg NH_3-N o Gg NH_3 • 14/17)

EF₄ = Factor de emisión correspondiente a las emisiones de N₂O de la deposición atmosférica de N en los suelos y en las superficies del agua (kg N₂O-N/kg NH₃-N o NO_x-N emitido).

Los datos de la actividad NO_x - $N_{(i)}$ y NH_3 - $N_{(i)}$ se toman de los inventarios identificados en la Sección 7.2, si están disponibles.

Ejemplo de estimación de emisiones indirectas de N₂O

Gas	Energía	IPPU	Agricultura	UTCUTS	Residuos	Total	En	nisiones indi	lirectas de N2O	
	Lileigia	IFFU	Agricultura	010013	nesiduos	TOTAL	N en gas	EF4	N20 en N	N20(i)
CH4	214,4	1,2	NA	NA	603,8	819,4				
СО	1.068,6	135,7	NA	NA	28,4	1.232,7				
NMVOC	188,9	424,7	NA	NA	8,8	622,5				
NOx	607,0	7,6	NA	NA	1,8	616,4	0,3	0,010	1,6	2,9
NH3	6,2	3,1			23,3	32,7	0,8	0,010	1,6	0,4
TOTAL										3,4

Reporte en los CRT (Table6)

TABLE 6 CROSS-SECTORAL REPORT: Indirect emissions of N₂O and CO₂ (Sheet 1 of 1)

Year Submission Country

Back to Index

		sou	INDIRECT EMISSIONS				
GREENHOUSE GAS EMISSIONS AND REMOVALS	CH ₄	co	NMVOC	NOx	NH ₃	CO ₂ (1)	$N_2O^{(2)}$
	(kt)					(kt)	
Total							
1. Energy							
2. Industrial processes and product use							
3. Agriculture ⁽³⁾							
4. LULUCF (3)							
5. Waste							
6. Other (as specified in summary l)							

⁽¹⁾ Parties may report indirect CO₂ from the atmospheric oxidation of CH₄, CO and NMVOCs, in accordance with decision 18/CMA.1, annex, para. 52.

⁽²⁾ Parties may report indirect emissions of N2O from sources other than agriculture and LULUCF, in accordance with decision 18/CMA.1, annex, para. 52.

 $^{^{(3)}}$ Indirect emissions of N_2O resulting from ammonia emissions are covered in the sectoral tables for agriculture and LULUCF. In this table, only indirect N_2O emissions resulting from NO_X emissions are to be included.

Muchas gracias por su atención

Para más información y solicitud de apoyo de CBIT-GSP, por favor contactar a:

Paulo CORNEJO

Coordinador Regional CBIT-GSP UNEP Copenhagen Climate Centre paulo.cornejoguajardo@un.org

