

Technical Webinar on Projection Tools for Eurasia, Central Asia and the Caucasus

13th June 2025

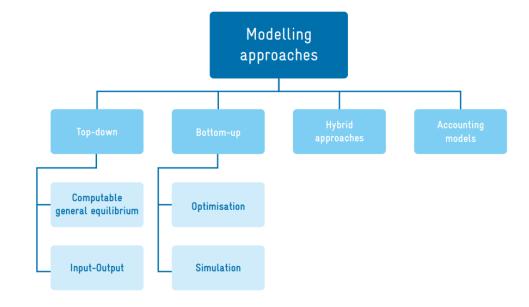
Dr Aiymgul Kerimray, PhD Scientist - Energy **UNEP-CCC**

Executed by: I (A

Funded by: Implemented by:

0 def limate cent

Content


Overview of modeling approaches	Introduction to GACMO	Introduction to LEAP
Tools for GHG emissions projections Choice of the model Comparison of models	Introduction to the tool Input data requirements Use of the GACMO tool Outputs Methodology for estimating GHG projections	What is LEAP? Example of outputs Structure User interface How do you get LEAP? Scenarios in LEAP Demand Analysis Transformation Analysis Data requirements

Overview of modeling approaches

Tools for GHG emissions projections Choice of the model Comparison of models

Tools for GHG emissions projections

- **Top-down models** evaluate the system from aggregate economic
- Bottom-up models consider technological options or projectspecific climate change mitigation policies.

Choice of the model

- There is no "best model".
- The choice of model needs to consider a wide range of factors concerning what the users aim to achieve by using the model

Choice

Source: Partnership on Transparency in the Paris Agreement

Comparison of models' Functionality

Source https://newclimate.org/

		GACMO	PROSPECTS	LEAP	TIMES
	Coverage of emission sources	High-level	Mid / High-level	More detailed, particulary for energy sector	Detailed focus on energy sector
	Breadth/ granularity of technology	Mid breadth / limited granularity	Low-Mid	Low to high (user defined)	High
Σ	Sectoral interlinkages	No	Energy supply and demand	Energy and some material flows	Energy and some material flows
FUNCTIONALIT	Temporal granularity	2020, 2025, 2030, 2050	Annual to 2050	Annual, unlimited timeframe. Within-year breakdown for seasonal and hourly variations.	Annual / multi-year time steps. Within-year breakdown for seasonal and hourly variations.
FUN	Representation of costs	Yes (limited variation over time)	No	Yes (annual variation)	Yes
	Optimisation functionality	No	No	Within electricity supply sector	Yes, within energy system
	Summary	Low	Low	Mid	High

Comparison of models' Accessibility

Source https://newclimate.org/

		GACMO	PROSPECTS	LEAP	TIMES
	Platform	Excel, open-source	Excel, open-source	Windows relational database; requires licence	Windows; requires licence (for GAMS)
	User fee	Free	Free; optional use of IEA input data requires licence	Free to certain users in low & middle-income countries; fee charged for others	Fee charged for GAMS license and user tools (e.g. interface)
ACCESSIBILITY	User guidance	Limited	Limited Extensive		Limited
ACCES	User community	Limited	None	Extensive	Mid
	Language options	English	English	Multiple: English, French, Spanish, Chinese, Portuguese + others under development	English
	Ease of navigation	High	Mid	High	Mid

Comparison of models' Analytical options

Source https://newclimate.org/

		GACMO	PROSPECTS	LEAP	TIMES
	Scenario building and analysis	Limited to BAU and one alternative	Facilitates multi-scenario analysis (simulation possible)	Facilitates multi-scenario analysis and simulation	Facilitates multi-scenario analysis and simulation
NS	Assessment of non -climate SD impacts	None	None (energy security indicators under development)	Air pollution-related impacts on health and agriculture; energy security indicators	Energy security indicators
L OPTIONS	Analysis of carbon pricing policies	No	No	In energy sector	In energy sector
ANAL YTICAL	Analysis of other policy instruments	No	Limited to simple representation of emission standards or national/sector carbon budgets	Limited to emission standards for some technologies or national/sector carbon budgets	Emission standards, carbon budgets and additional flow constraints
AN	Linkages to other models	Low granularity limits linkage options	Yes, soft links to sector deep- dive modules and SD impact assessments	Yes, with API (programming code), or soft-links via Excel	High granularity facilitates many options for hard and soft links
	Summary	Analytical options limited to specific abatement measures	Facilitates multi-scenario analysis; deep-dive analysis requires links to other tools	Facilitates multi-scenario analysis and energy sector planning	Extensive analysis of energy sector and options for linking to other tools

Questions modellers might aim to answer and suggestions for suitable modelling approaches

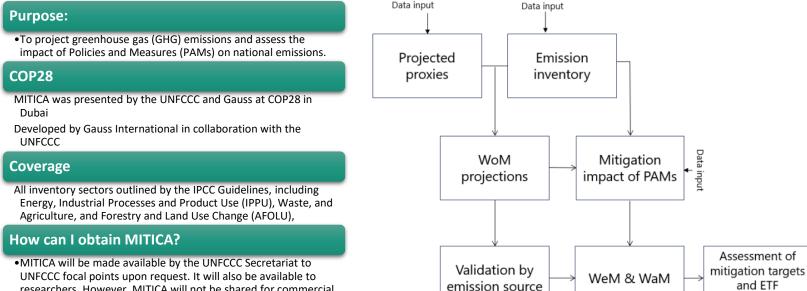
- Each model is designed to assist the modeller in answering specific questions.
- Key considerations include identifying the question you aim to address:
 - how will GHG emissions evolve with certain mitigation actions?
 - determining the necessary functions of the tool (e.g., generating MACC curves)
 - defining the time horizon (e.g., 2 or 50 years)
 - deciding the scope (e.g., the entire economy vs. the energy sector)
 - assessing whether the model should offer flexibility for future growth.

QUESTION	SUGGESTION
What are the impacts of the mitigation actions planned and how much will they cost?	All of the model types described can be used to assess the impacts of mitigation actions, and nearly all of them include costs ²² From this, assessments of the mitigation potential of the sector can be made.
What impact will these mitigation actions have on economic development e.g., job creation?	Top-down macro-economic models are best placed to "provide insights into economic impacts and job creation, taking account of interactions within the system. ²²
What is the most cost-effective route to achieve our target?	Optimisation models (e.g., TIMES) are built to output an "optimal" pathway based on the criteria selected by the modeller, for example the most cost-effective pathway to an emission reduction target.
What will our future emissions be?	An accounting model could be a good starting point for gathering the data needed to forecast future energy supply, demand and emissions, and to model the likely impact of economic growth, renewable energy and energy efficiency measures on future GHG emissions. ²²
How will emissions evolve in a certain sector?	A bottom up simulation model or a sectoral accounting model (e.g., EX-ACT for the AFOLU sector) can be a useful starting point for exploring how emissions in a specific sector might evolve.
How do we model a long-term target?	Hybrid modelling tools are most appropriate for this scenario, combining different approaches for different time horizons to help manage uncertainty.
We need a very quick assessment of the potential impact of mitigation actions but do not have much expertise or data	Simple accounting tools offering default data like GACMO seem most appropriate in this case.
We have limited data and expertise now and we would like to continue using the same model over time	Accounting tools like LEAP or PROSPECTS+ seem most suited.

Source: Partnership on Transparency in the Paris Agreement.

Projections of Greenhouse Gas Emissions and Removals: An Introductory Guide for

Practitioners


How to ensure quality of projections?

- The IPCC has established principles for historical GHG inventories to ensure quality, and these principles can also be applied to GHG projections:
 - Transparency: Clear documentation for understanding projections.
 - There is sufficient and clear documentation such that individuals or groups other than the compilers can understand how the projections were compiled;
 - Accuracy: Projections are unbiased with minimized uncertainties.
 - **Completeness:** Includes all relevant sources, sinks, and gases.
 - **Consistency:** Uses the same data sources and methodologies across years.

The Mitigation-Inventory Tool for Integrated Climate Action (MITICA)

The Mitigation-Inventory Tool for Integrated Climate Action (MITICA)

- researchers. However, MITICA will not be shared for commercial purposes.
- Mitica Gauss International

Manual_draft_Mitigation_toolrev_v6.pdf

Reporting

The Mitigation-Inventory Tool for Integrated Climate Action (MITICA)

https://unfccc.int/sites/default/files/res ource/2 Introduction MITICA.pdf

Data Needs

- GHG emissions by IPCC category from the inventory, from the IPCC software or excel files (mandatory).
- Macroeconomic proxies, historical and projected (mandatory).
- Sectoral proxies, historical and projected (optional).

Modelling Approach

- Without measures (WoM) scenario estimated through innovative statistical techniques (regressionbased machine learning methods) which automatically define nationallyspecific models at IPCC category based on time series (input data).
- MITICA is coded using Phyton in a desktop application.
- More than 60 PAMs predefined with default parameters, that need to be customised by users.
- With existing measures (WeM) and with additional measures (WaM) easily designed by users by selecting the PAMs by scenario.

Results

- WoM, WeM, and WaM scenarios for NDC tracking.
- Rank PAMs by magnitude.
- Information needed to report projections and mitigation actions in CTF tables.

Introduction to GACMO

Introduction to the tool Input data requirements Use of the GACMO tool Outputs Methodology for estimating GHG projections

I. What is GACMO?

GACMO tool

GACMO = Greenhouse gas Abatement Cost Model

Main purpose of the tool- defining NDC target level

Excel based bottom-up modelling tool for greenhouse gas emissions

IPCC/CDM Methodologies

Developed by Jørgen Fenhann at the UNEP CCC

Available for free on the UNEP CCC website GACMO tool - UNEP-CCC (unepccc.org)

User defines the mitigation options and their scale

I. What is GACMO?

Input data requirements

Basic country data	Population, GDP
Key assumptions	 Grid emission factor, energy prices, emission factors, calorific values of fuels, GWPs, etc.
Energy balance	 Production and consumption data of fuels and electricity by sectors for the start year
GHG emissions for non-energy sectors	Agriculture, Forestry, Waste, Industrial processes and Fugitive emissions
Growth factors	 Annual % change up to 2025, 2030, 2035 and 2050 (BAU scenario)
Mitigation options	 Units penetrating in the years 2025, 2030, 2035, and/or 2050
Technical and economical parameters of the technology/mitigation options	• E.g. solar insolation, annual distance for transport, number of hours usage of lighting, investment costs etc.

Use of the GACMO tool

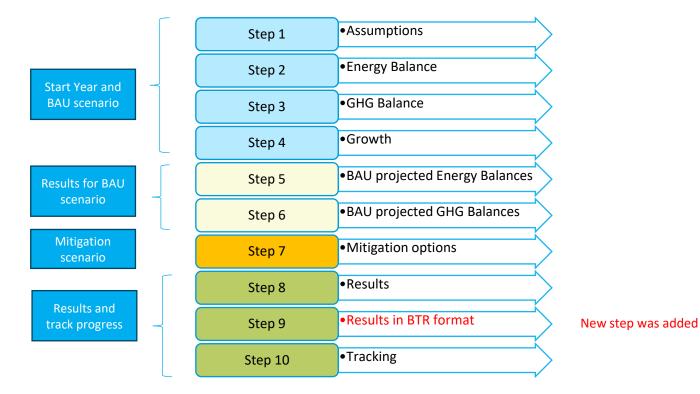
GHG emissions projections for Business As Usual (BAU) scenario and for mitigation scenario in 2025, 2030, 2035 and 2050

% reduction of the GHG emissions compared to the BAU for NDC development/update

GHG reduction and the cost **for each mitigation option** compared to the technology used in the baseline.

Expected and achieved emissions reduction (annual, cumulative) from mitigation measures

Overview of the total mitigation effort: total GHG reduction, total investment, and total annual cost.

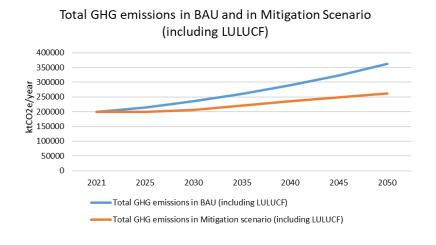

I. What is GACMO?

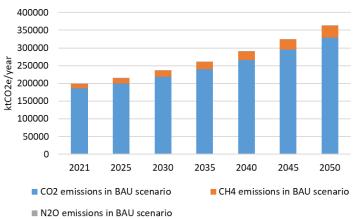
Use of the GACMO tool

_		
	National Communications	
	•Albania has used this for its NC1 (2002), NC2 (2009), NC3 (2016), NC4 (2022)	
	INDC/NDC	
	•Maldives (INDC, 2014); Cameroon (NDC1, 2021); Ghana (NDC1, 2021); Niger (NDC1, 2021)	
	BUR	
	•Maldives (BUR1, 2019); Albania (BUR1, 2021); Ghana (BUR3, 2021)	
	BTR	
	 Many countries are using the GACMO tool to prepare their first BTR 	
	National Action Plan or Long-Term Strategy	
	•Maldives (National action plan on air pollutants, 2019); Tunisia (inputs for LTS); Jordan (inputs fo	LTS)
	Regional analysis	

I. What is GACMO?

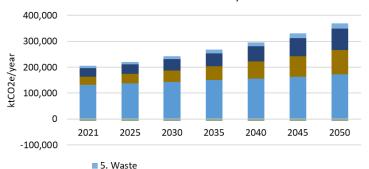
Main steps to develop the GACMO tool




New versions of the GACMO tool

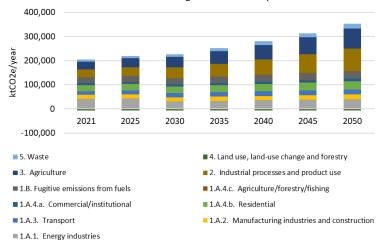
Version 2.0				
Released January 2024	Version 2.1			
Supported by ICAT Step-wise approach for model development	Released August 2024	Version 2.2		
evelopment R avigation throughout the tables 2 v clicking on button	2040, 2045 were added	Released March 2025. Updated results Sheet		
An improved interface through improved tables and figures throughout the model.		 A revised sectoral disaggregation in line with CRT Gases: CO2, CH4, and N2O in kt of CO2 equivalent. 		
		 Projections with and without LULUCF An additional Step 9 "Results BTR" was added. 		

Outputs



GHG emissions by gases in BAU scenario

- Total GHG emissions by scenarios
- GHG emissions by individual gases and scenarios
- Including and excluding LULUCF


Outputs

GHG emissions projections by sectors

Total GHG emissions in BAU by sectors

- 4. Land use, land-use change and forestry
- 3. Agriculture
- Industrial processes and product use
- 1. Energy

Total GHG emissions in Mitigation Scenario by sub-sectors

Results are presented for 5 categories and 11 sub-categories

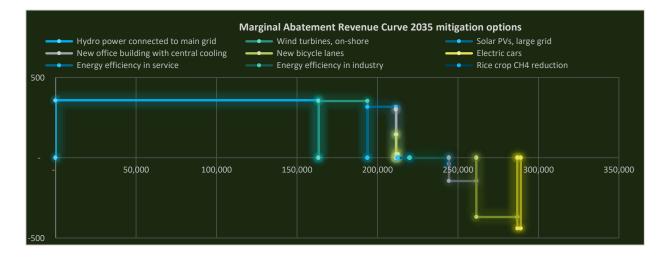
The categories are defined in accordance with the Common Reporting Tables (CRT) agreed upon by the Parties to the Paris Agreement.

I. What is GACMO?

Outputs

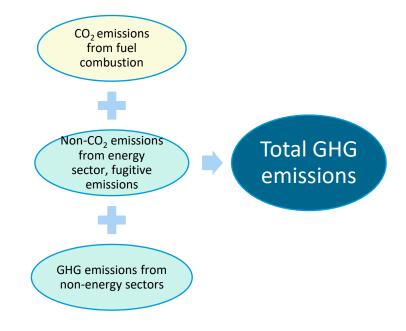
Results in BTR format

- The results can be used as inputs for the biennial transparency report (BTR)
- In particular, for the Common tabular formats (CTF) for the electronic reporting of the "Information necessary to track progress made in implementing and achieving nationally determined contributions under Article 4 of the Paris Agreement".
 - **CTF Table 7** Information on projections of greenhouse gas emissions and removals under a 'with measures' scenario
 - CTF Table 9 Information on projections of greenhouse gas emissions and removals under a 'without measures' scenario
 - CTF Table 8 Information on projections of greenhouse gas emissions and removals under a 'with additional measures' scenario
 - To be created in a second GACMO file

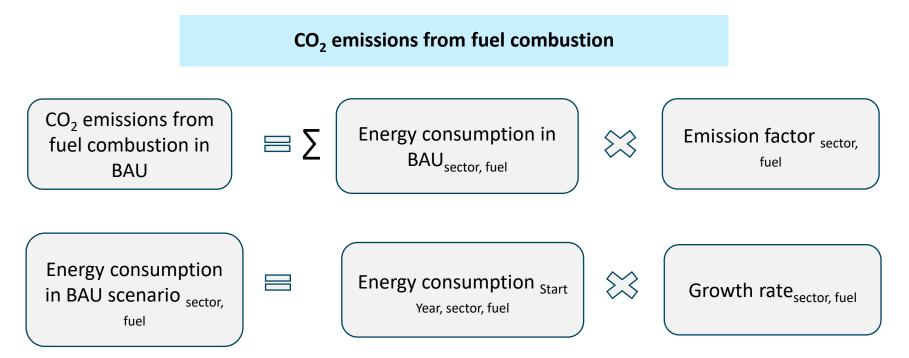

Information on projection	ons of gr	eenhous	e gas er	nissions	and	l remov	als	under B	AU	scenari	0	
	Most rea year in Party natior inventa report (ki eq) ⁽ 2021	the 's al ory CO2	1	Projections 2030	of GI	HG emissio 2035	ons a	ind remov 2040	als, (⁽ <u>kt CO2 eq</u>) 2045	c	2050
Sector ⁴ Energy Transport Industrial processes and product use Agriculture LULUCF Waste Other (specify)	11632 1553 3197 3225 -635 9150	17 12 6 11 5 31 5 31 5 31	00649 F 6116 F 6950 F 6757 F 3350 F 0183 F	126279 16871 44376 43277 -6350 11640		132173 17662 53416 50954 -6350 13305		138344 18489 64419 59993 -6350 15208		144803 19356 77812 70635 -6350 17383	* * *	151565 20262 94115 83166 -6350 19870
Gas C02 emissions including net C02 from LULUCF C02 emissions excluding net C02 from LULUCF CH4 emissions including CH4 from LULUCF CH4 emissions excluding CH4 from LULUCF N20 emissions including N20 from LULUCF N20 emissions encluding N20 from LULUCF HFCs PFCs SF6 NF3 Other (specify)	18558 19193 1295 1295 351 351	3 20 9 1. 9 1.	9239 15589 4702 4702 364 364	218491 224841 17223 17223 380 380		240575 246925 20187 20187 397 397		266015 272365 23673 23673 415 415		295433 301783 27773 27773 434 434		329579 335929 32596 32596 453 453
Total with LULUCF Total without LULUCF	19889 20524		4305 0655	236093 242443	-	261159 267509	-	290103 296453		323640 329990	-	362629 368979

I. What is GACMO?

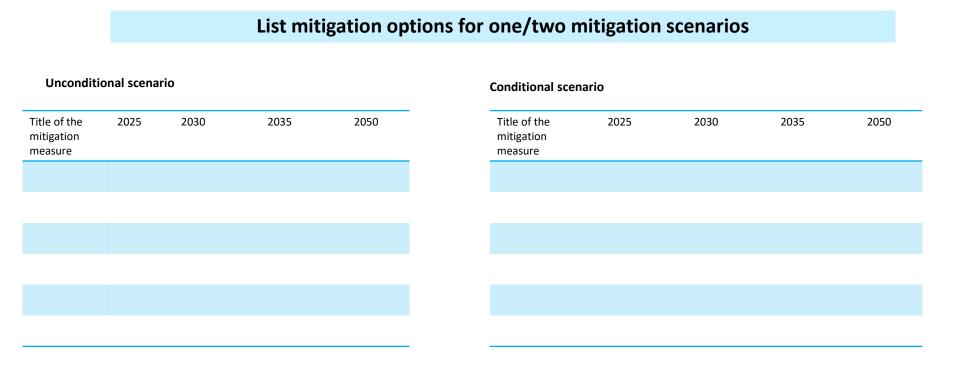
Outputs


Marginal abatement revenue curve (MAR curve)

- Y-axis: Revenue of an option to reduce one tonne of CO_2 equivalent (expressed in US\$/tCO₂-eq)
- X axis: GHG emission reduction potential of an option (expressed in ktCO₂-eq / year)



BAU scenario


Approach for estimating total GHG emissions

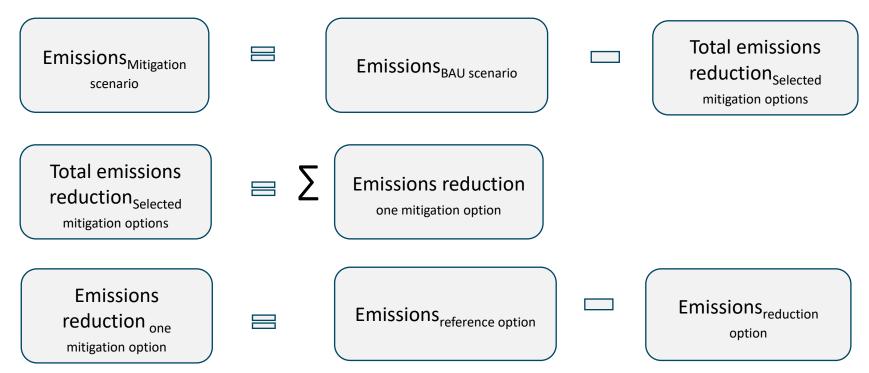
BAU scenario

Mitigation scenario

Mitigation scenario

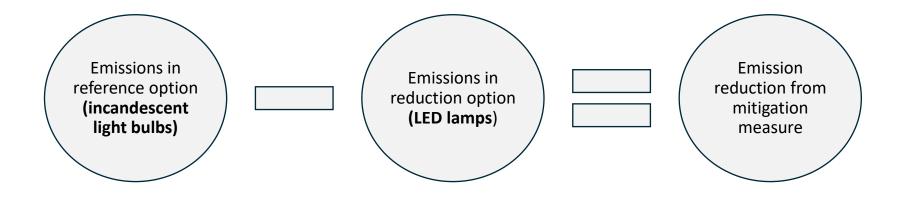
Defining the list of mitigation options for the mitigation scenario

119 pre-defined mitigation options


User selects mitigation options applicable for the country

For each mitigation option chosen, **the user will have to insert** (in the column I) **the number of units in** the year 2025, 2030, 2035, or 2050.

User can refer to national reports such as sectoral policy planning documents, national development strategies, NDCs, etc.


It is good practice to **involve a representative group of national experts** from the different sectors/ministries in the development of list of mitigation options

Mitigation scenario

Mitigation scenario

Approach for the calculation of emission reduction from the mitigation measure Example of efficient lighting

III. Conclusions

- GACMO tool is a **simple tool, easily adaptable** to a specific national context used to make analysis of mitigation options and their effects in terms of GHG emissions reduction in the context of NDC preparation or update
- The GACMO calculations are transparent and easy to follow, in line with the methodologies established by the IPCC and CDM
- GACMO tool allows to establish a Business As Usual (BAU) projections by 2025/2030/2035/2050
- GACMO tool allows to establish a mitigation scenario projection (percentage of reduction of GHG emissions in comparison with BAU)
- GACMO tool allows to calculate the reduction of GHG and the cost related to each mitigation option compared to a technology used as a reference
- GACMO tool allows to "play" with the scale of application of any mitigation option to reach a global reduction target
- New version of GACMO has an improved interface and follows step-wise approach

Introduction to LEAP model

What is LEAP? Example of outputs Structure User interface How do you get LEAP? Scenarios in LEAP Demand Analysis Transformation Analysis Data requirements

What is LEAP? (I)

A Windows-based tool for energy planning and GHG mitigation assessment developed over the last 40 years by the Stockholm Environment Institute (SEI).

Applied in almost 200 countries.

At least 60 countries used LEAP to help develop their INDCs.

> 5000 active users.

A scenario-based modeling tool that explores how emissions may change in the future under alternative policy settings (e.g. baselines and low emissions development scenarios).

Typically used at the national scale but also works for cities, regions and multi-country analyses.

What is LEAP? (II)

Primarily focused on **energy sector** GHG emissions but can be used across all sectors (e.g. industrial processes, solid waste, land-use change and forestry).

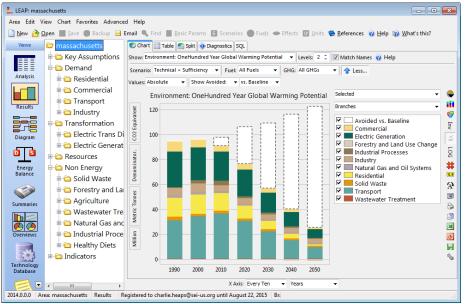
Not just for modeling: supports data management & documentation, results visualization & stakeholder engagement. Examines GHGs, local **air pollutant emissions**, economic costs, energy security, resource requirements, and technology and activity trends.

Closely follows IPCC Inventory Guidelines.

Includes Tier 1 & 2 default emissions factors and **standard GWPs**.

LEAP for GHG Mitigation Analysis

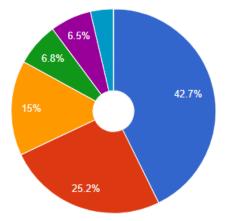
Low initial data requirements make LEAP usable in situations where good data is in short supply and expertise is limited.


User-friendly design and emphasis on results communication helps make NDC analyses more broadly accessible: to planners, decision makers and other stakeholders (not just modelers). **Demand-first**, enduse oriented structure helps frame mitigation analysis within broader development goals.

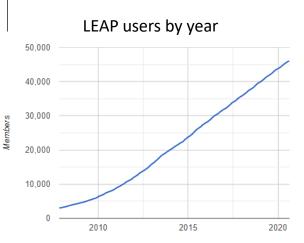
3

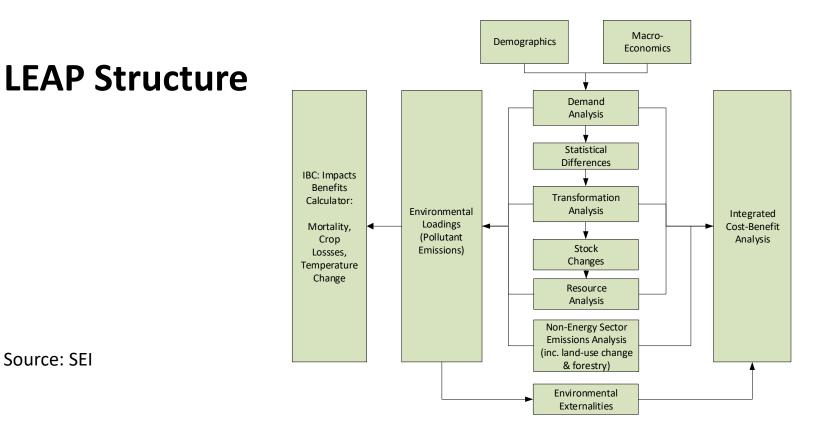
Fast, interactive calculations encourage users to take an iterative "build and refine" approach to mitigation modeling. LEAP's bottom-up approach is well suited for exploring **technologyoriented** energy and climate policies. Its linkage to the Integrated **Benefits Calculator (IBC),** allows important climate mitigation co-benefits such as air pollution health impacts to be quantified and explored.

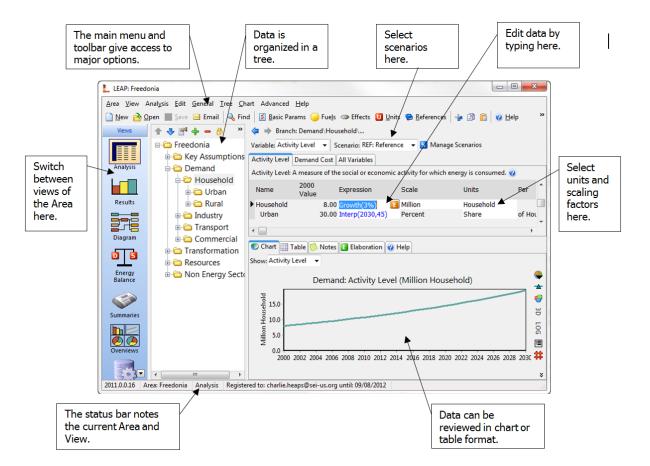
Examples of outputs of LEAP



Source: SEI


Widely Used for NDC Preparation and National Communications




At Least 38 Countries Used LEAP for INDC Preparation							
Armenia	Ghana	Myanmar					
Albania	Haiti	Niger					
Antigua & Barbuda	Iraq	Nigeria					
Azerbaijan	Israel	Palau					
Bahamas	Jamaica	Palestine					
Bangladesh	Jordan	Philippines					
Belarus	Lebanon	Serbia					
Bosnia and Herzegovina	Liberia	Uganda					
Botswana	Mauritania	Vietnam					
Cambodia	Mongolia	Yemen					
Chile	Montenegro	Zambia					
Ecuador	Morocco	Zimbabwe					
Micronesia	Mozambique						

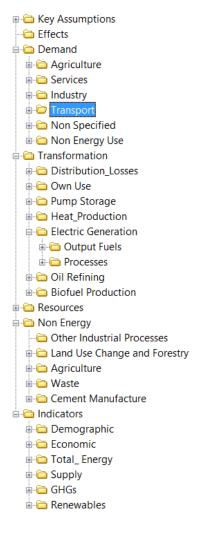
Others using LEAP to help develop National Communications, Biennial Update Reports (BURs), Low Emission Development Strategies (LEDS), Nationally Appropriate Mitigation Actions (NAMAs), etc.

LEAP: User Interface

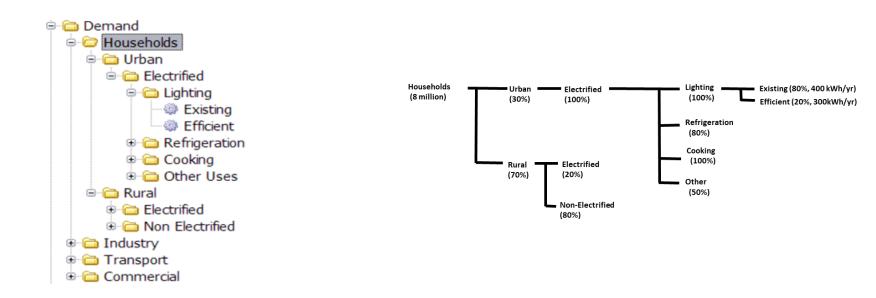


How Do You Get LEAP?

- Download from LEAP web site: <u>https://leap.sei.org/download</u>.
- User name and password required to fully enable downloaded software. Provided to licensed users.
- Licenses are available at no charge to non-profit, academic and governmental institutions based in low-income and lower-middle-income countries. Available at low cost in upper-middle income countries. All others required to purchase a standard license. Simple and quick process to apply online.
- Technical support from SEI though LEAP web site or via email.
- Most users will need training: available through SEI or regional partner organizations.
- Check LEAP web site for news of training workshops.


Scenarios in LEAP

Add — Delete ^{Mª} Rename ^A Duplicat → Ø BAS: Baseline → Ø POL: All Policies (A)	^	↑ ↓ ☆ Print □ Show Additional Scenarios in Tree Abbreviation: POL		
TRA: Transport Package (A)		GWP Values: From Effects Screen	~	2
T1: Electric Vehicles				
T2: Smaller Cars		Inheritance Notes		
T3: Switch NE Air Travel to Rail		Based on: Baseline		
T4: Improve Transit Load Factors				
T5: Increase Transit Service		Additional Scenarios:		
- T6: Electrify Commuter Rail		Abb Scenario	^	+
T7: Bus Electrification		TRA Transport Package		Ľ.
T8: Biofuel Buses		RES Residential Package		
T9: Biofuels for Aircraft		COM Commercial Package		1
🔲 T10: Electrify Intercity Rail		E2 Renewables + Keep Gas		÷
🔲 T11: Smart Growth		N Non Energy Package		
🔲 T13: Car Pooling		2GB Second Gen Biofuels		
- T14: Biofuels for Road Freight		IN Industry	~	
T15: Efficient Vehicles		Expression Search Order:		
T16: Switch Trucks to Cars	~	POL, TRA, RES, COM, E2, N, 2GB, IN, T1, T6, T7, T8, T9		
>		T10, T14, T15, T17, T3, T4, T5, R2, R4, R3, R5, R7, R8, R9		
esults will be calculated for checked scenarios ncheck to reduce calculation time		R10, R12, R11, C1, C2, C3, C4, C5, C6, C7, C8, C9, N1, N		



The Tree

- The main data structure used for organizing data and reviewing results.
- User can edit the tree structure.
- The tree supports standard editing functions (copying, pasting, dragging & dropping of groups of branches)
- The tree is constant across all regions scenarios. However, you can hide branches of the tree either temporarily or in particular regions (e.g. some states may only have certain industries).

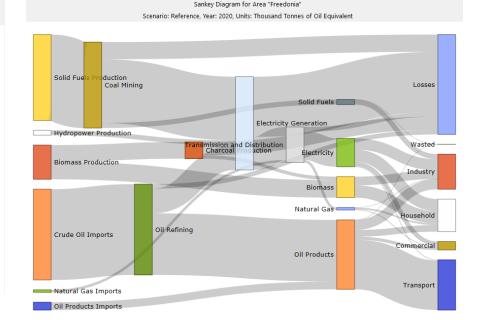
Demand Analysis in LEAP

Demand Analysis in LEAP

 $E = A \times I$

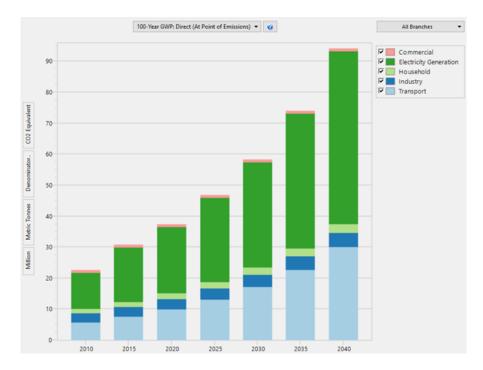
Energy demand (E) = Activity Level (A) x Energy Intensity (I).

- Hierarchical data structure breaks down overall activity level (A) into smaller, manageable pieces.
 - For example: number of urban households using efficient electric lighting is broken down by multiplying total households x urban fraction x electrified fraction x saturation of lighting x efficient device share of lighting.


Transformation Analysis in LEAP

- Covers analysis of energy conversion, transmission and distribution, and resource extraction.
- Demand-driven engineering-based simulation.
- Basic hierarchy: "modules" (sectors), each containing one or more "processes". Each process can have one or more feedstock fuels and one or more auxiliary fuels.
- Allows for simulation of both capacity expansion and process dispatch.
- Calculates imports, exports and primary resource requirements.
- Tracks costs and environmental loadings.
- Choice of two overall methodologies: **simulation** or **optimization**.

Putting Demand & Supply Together: Energy Balances


- Demand and supply results are combined in LEAP's integrated framework.
- Results are automatically formatted and can be displayed as standard energy balance tables.
- Balances can be viewed for any year, scenario or region in different units.
- Balance columns can be switched among fuels, fuel groupings, years, and regions.
- Balance rows are the Demand and Transformation sectors. Optionally can show subsectoral results
- Balances can be viewed in table, chart, or sankey diagram formats.

Energy Balance for Area "Freedonia"									
Scenario: Reference, Year: 2020, Units: Thousand Tonnes of Oil Equivalent									
	Solid Fuels	Natural Gas	Crude Oil	Hydropower	Biomass	Electricity	Oil Products	Total	
Production	5,685	-	-	321	2,263	-	-	8,269	
Imports	-	170	6,006	-	-	-	517	6,693	
Exports	-	-	-	-	-	-	-	-	
Total Primary Supply	5,685	170	6,006	321	2,263	-	517	14,962	
Coal Mining	-1,137	-	-	-	-	-	-	-1,137	
Oil Refining	-	-	-6,006	-	-	-	5,705	-300	
Charcoal Production	-	-	-	-	-874	-	-	-874	
Electricity Generation	-4,215	-	-	-321	-	2,182	-1,632	-3,986	
Fransmission and Distribution	-	-3	-	-	-	-306	-	-309	
Total Transformation	-5,352	-3	-6,006	-321	-874	1,877	4,073	-6,606	
Household	-	108	-	-	815	797	436	2,157	
Industry	332	10	-	-	573	736	667	2,320	
Transport	-	-	-	-	-	46	3,280	3,326	
Commercial	-	49	-	-	-	297	207	554	
Total Demand	332	167	-	-	1,389	1,877	4,590	8,356	
Unmet Requirements	0	-	-	-	-	0	0	0	

Emissions Analysis

- Emission factors for any GHG or local air pollutant can be entered in LEAP.
- These can be specified in any physical unit and denominated by units of either energy consumption or production (e.g. kg/ton of coal) or distance driven for transport factors (e.g. grams/mile).
- They can also be specified in terms of the chemical composition of fuels (e.g. sulfur). This automatically adjusts standard emission factors based on specific fuels used in each area.
- LEAP includes **default IPCC Tier 1 emission factors** for GHG inventories.
- Results can be shown for individual pollutants or summed to show overall Global Warming Potential (GWP).

Data requirements in LEAP I

Demographic Data

- National population data (historical and official government projections)
- Rates of urbanization (historical and official government projections)
- Average household sizes (historical and official government projections)

Macroeconomic Data

- GDP data (historical and projections)
- You may wish to link your LEAP energy sector analysis to a broader macro-economic analysis or macroeconomic model.

General Energy Data

- Current and past national energy balances with data on energy consumption and production by sector or sub sector. NB: Energy balance data is the single most important data requested here!
- Documents describing national energy policies and plans and GHG mitigation assessments for the country.

Data requirements in LEAP II

Energy Price Data

- Available data describing current and historical national energy prices for major fuels (coal, natural gas and major oil products) as well as for electricity. If possible please distinguish the prices charged to major sectors (households, industry, commercial sales).
- Elasticities: Any studies that have examined the elasticity of energy demand with respect to prices and/or income levels.

Demand Forecasting

- Activity Levels: Energy forecasts rely on projections both of energy intensities (energy per unit activity) and overall activity levels.
- Activity data varies from sector to sector.

Data requirements in LEAP III Energy supply

- Current and historical installed capacities (MW) of each major type of power plant.
- Historical generation (GWh) from each major type of power plant.
- Average energy efficiencies or heat rates of each major type of power plant.
- Costs: Any data describing capital (\$/MW), fixed (\$/MW) and variable (\$/MWh) operating and maintenance and fuel costs (\$/GJ) of each major type of power plant.
- Data describing the seasonal load shape for your electric system e.g. MW hourly peak load.
- Data describing the percentage maximum availability and, if possible, the dispatch priority of each type of power plant. If possible provide data showing planned vs. unplanned outages of each major type of power plant.
- Feedstock fuels: please describe the types of fuels used by each major type of power plant.
- Any capacity expansion plans describing what types of power plants are likely to be built in the future.
- Transmission and distribution losses (%) if possible including both technical and non-technical losses.
- Provide similar types of data for CHP as listed above for electricity generation. Also if possible describe the production efficiencies for both electricity and heat.

Data requirements in LEAP IV

Oil Refining

• Try to provide current and historical data describing the different feedstock fuels and products produced by refineries, their efficiency and the capacity of the refineries (TOE/year) as well as data describing historical imports and exports of crude and oil products.

Other Major Sectors

 if your country has other major energy conversion sectors such as charcoal making, coal liquefaction, gas works, ethanol production, heat production, combined heat and power, etc. please try to provide basic data describing these sectors including descriptions of the fuels used and produced, process efficiencies, and current and future planned capacities of processes.

Extraction Sector Data

 If extraction sectors such as coal mining or oil and gas production are important, try to provide data describing the efficiency and capacity of these sectors as well as information on the fuels produced and the energy consumed during extraction. If possible provide data on fossil reserves in the country.

Renewables

 Renewable energy is becoming increasingly important in many countries and may be an important focus of any GHG mitigation analysis. If possible, provide data describing the technical and economic resource potential for each major type of renewable (e.g. GJ/Year for hydro, wind, solar, geothermal, biomass, etc.)

Data requirements in LEAP V

Energy Sector Emission Factors

• For a first cut GHG mitigation assessment IPCC "Tier 1" emission factors are generally used. However, these can be overridden by more specific national emission factors where appropriate.

Non-Energy Sector Sources and Sinks of GHGs

• The <u>EDGAR database</u> from PBL provides estimates of non-energy sector GHG sources and sinks for most countries. However, national estimates of non-energy sector emissions and sinks may be more accurate and appropriate.

Fuel Characteristics

 Default international data describing fuels and their characteristics (energy content, chemical composition, etc.) is generally sufficient to meet the needs of most studies. However, in some countries, these characteristics are very different from international average values.

Thank you! Questions?

aiymgul.kerimray@un.org

Executed by:

Implemented by:

Funded by:

gef

