

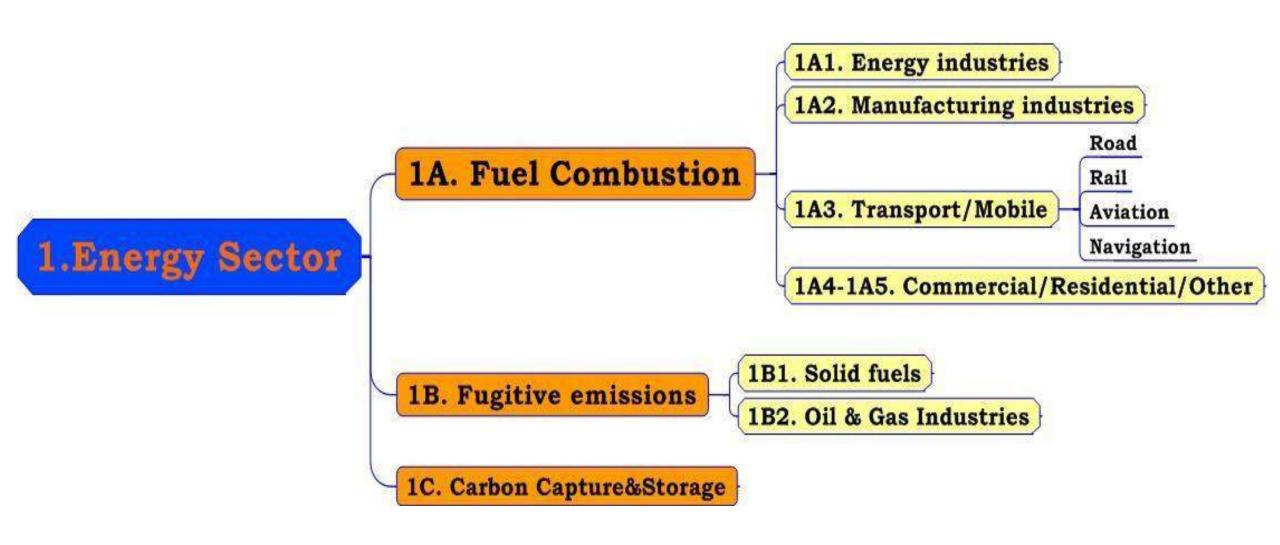
2006 IPCC Guidelines: Key concepts for the Energy sector: Transparency Workshop, Pacific Region

Venue: Crown Beach Resort & Spa, Rarotonga, Cook Islands Date: 25-28 March 2025

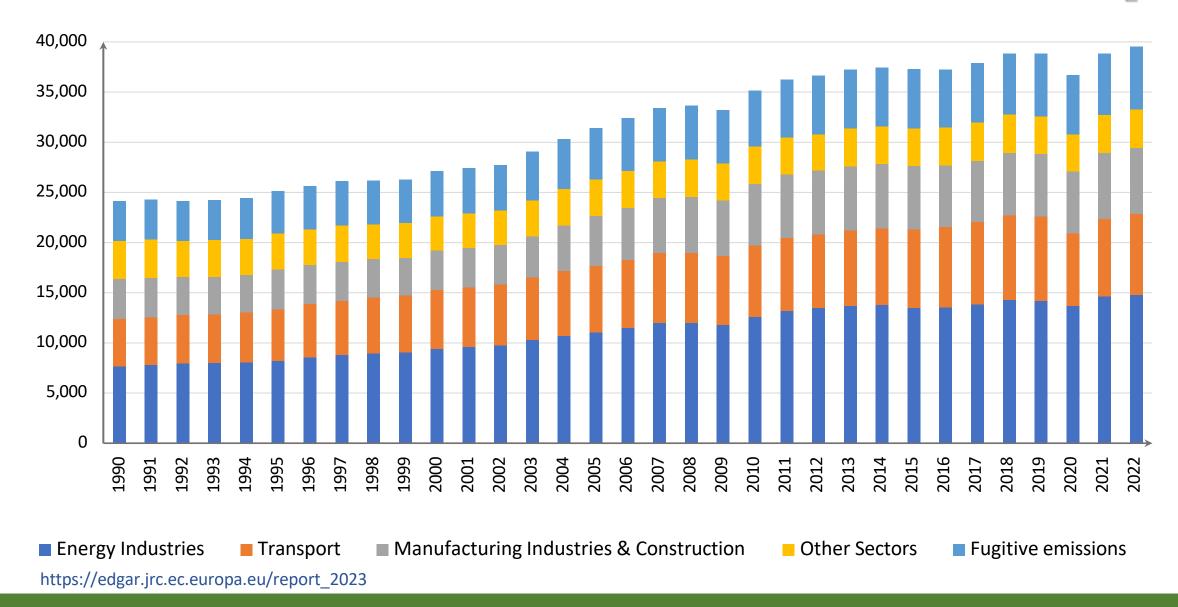
Sekai Ngarize
Climate Transparency Advisor: UNEP-CCC

The Outline

Define the key terms and concepts related to activities associated with the energy sector


Identify the main sources and types of energy-related activities

Identify the main categories and subcategories used by the IPCC Guidelines for the Energy sector


Outline the common methods used to estimate emissions for energy-related activities

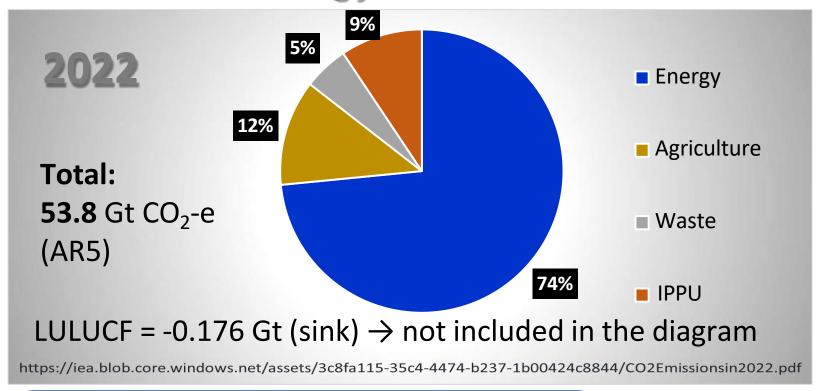
Explain the Reference approach to energy emissions calculations

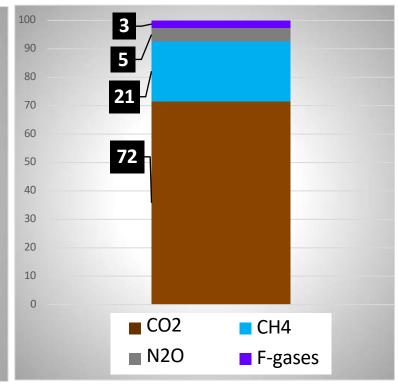
Energy sector: basic sectoral structure

Energy: Sector composition (Global energy emissions, Mt CO₂-e)

Energy overview

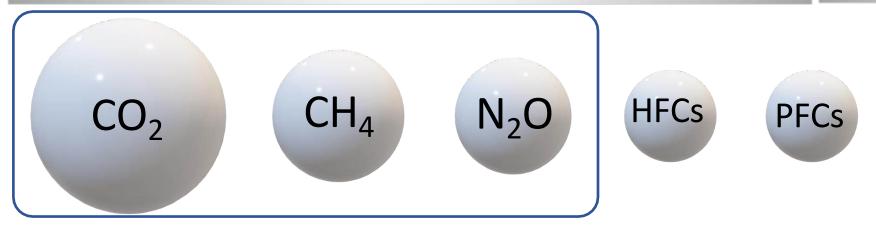
According to https://edgar.jrc.ec.europa.eu/report_2023) and EDGARv8.0 website (https://edgar.jrc.ec.europa.eu/dataset_ghg80, the total world emissions were **53.8** Gt CO_2 -e in 2022; and Global total CO_2 emissions (excl. LULUCF) = **38.5 Gt**


IEA Facts


In 2022:

- Coal accounted for over **40% of the overall growth** in global CO₂ emissions in 2022.
- Coal emissions stand at <u>15.5 Gt CO₂</u> (40% of global CO₂ emissions; 29% of all GHGs world total)
- Natural gas generated only 50% of emissions from coal 7.4 Gt CO₂ (19% of world total CO₂)
- Oil generated **11.2 Gt CO₂** (**29%** of world total CO₂)

https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf


How the Energy sector contributes to GHG Inventories

SF₆

NF₃

Key terms and concepts - 1

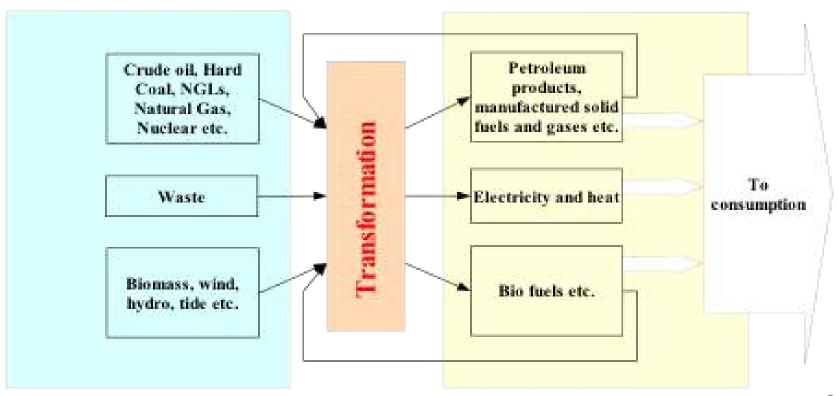
• Fuel:

• Fuel is any substance burned as a source of energy (as heat or power) in either mechanical or electrical form. Most fuels are of a fossil origin, although biomass can also be used as a fuel source (e.g., wood or ethanol).

Energy:

- Generally, it is the capacity of doing work (as defined in physical sciences).
- In terms of GHG inventory, the energy sector accounts for emissions produced as a result of energy release from fossil and biofuels as well as other sources such as geothermal, solar, and wind to enable various activities.
- The sector also includes emissions from technologies and processes used for exploration, production, transformation, transportation, and storage of fuels. The transfer and consumption of secondary forms of energy—such as electricity, steam, and heat—are also reported in energy data.

Key terms and concepts


- **Primary energy sources** refer to all fossil fuels in the form that they are when they are extracted from the ground as well as waste and renewable energy sources.
 - o crude oil,
 - o all types of coal (i.e., anthracite, lignite/brown coal, coking coal),
 - o natural gas.
 - Solid biomass
 - Municipal wastes, industrial wastes, and other solid wastes
 - o Peat.

Primary energy

Secondary energy

typical fuel flows

Carbon content of fuels

Natural gas

- Depends on composition (methane, ethane, propane, butane and heavier hydrocarbons)
- Natural gas flared at the production site will usually be "wet" its carbon content factor will be different
- Typical: 15 to 17 tonnes C/TJ.

- Lower carbon content for light refined petroleum products such as gasoline
- Higher for heavier products such as residual fuel oil
- Typical for crude oil: 20 tonnes C/TJ.

Coal

- Depend on coal's rank and composition of hydrogen, sulphur, ash, oxygen and nitrogen
- Typical ranges: from 25 to 28 tonnes C/TJ.

Energy value of fuels: NCV and GCV

- NCV = Net Calorific Value
- GCV = Gross Calorific Value
- The difference between NCV and GCV is the latent heat of vaporization of the water produced during the combustion of the fuel:
 - o for coal and oil, the NCV is about 5 % less than the GCV
 - o for most natural and manufactured gas, the NCV is about 10 % less
- Where fuel characteristics (moisture, hydrogen, and oxygen contents) are known, the 2006 IPCC Guidelines give a more precise method to convert GCV to NCV data:

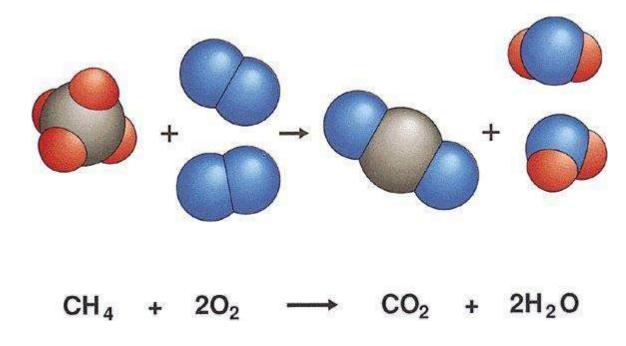
NCV = GCV - 0.212 H - 0.0245M - 0.008Y

M – Moisture, H – Hydrogen, Y – Oxygen, %

- Emission factors for CO₂ are in units of kg CO₂/TJ on an **NCV** basis and reflect the carbon content of the fuel and the assumption that the carbon **oxidation factor is 1**
- IPCC default NCV values can be found here: tbl. 1.2,

https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf

Quiz


Q1

The IPCC default NCVs for oil, natural gas, and anthracite are 42.3 TJ/Gg, 48 TJ/Gg, and 26.7 TJ/Gg respectively.

- a) Which fuel type is most efficient in terms of energy? Natural gas
- *a)* What produces more energy:
 - a) 150 kt of anthracite 4,005 TJ
- \sqrt{b} 90 kt of natural gas 4,320 TJ
 - c) 100 kt of oil? 4,230 TJ

GHG emissions from the energy sector

- Fossil fuels are primarily made up of hydrocarbon molecules that (as their name suggests) are composed of hydrogen and carbon atoms.
- In addition to hydrogen and carbon, fossil fuels contain sulfur, nitrogen, and heavy metals.
- When fossil fuels are combusted, these atoms combine with oxygen from the air to form relevant oxides: largely CO₂ and water (H₂O). Other products include oxides of other elements (e.g., SO₂, N₂O, etc.)
- Incomplete combustion could also lead to the formation of CH₄, CO, non-methane volatile organic compounds (NMVOCs), etc.
- The energy sector reports the following direct GHGs:
 - CO₂
 - CH₄
 - N₂O
- CO₂ formed from biofuels is reported as a memo item and does not count to the national totals

Energy-related activities and major sources of emissions rees of

Mobile combustion means the burning of fuel in a mobile device, like an engine or a generator. Mobile combustion is associated with transport activity, i.e., road, off-road, air, railways, and water-borne navigation.

Mobile sources produce direct greenhouse gas emissions of carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O) from the combustion of various fuel types, as well as several other pollutants such as carbon monoxide (CO_2), Non-methane Volatile Organic Compounds ($NMVOC_3$), sulfur dioxide (SO_2), particulate matter (PM) and different nitrogen oxides (NO_3), which cause or contribute to local or regional air pollution.

During different stages of CO₂ capture and storage (CCS) amounts of CO₂ could be released in the atmosphere either as result of leaks or intentionally as part of equipment maintenance.

During the extraction, transportation and storage of fossil fuels, amounts of CH4 and N2O are released into the atmosphere:

- CH4 is released accidentally (e.g., leaks) or intentionally (e.g., releasing pipeline pressure).
- N2O emissions from coal mining and oil and gas systems arise from flaring of gases.

Stationary fuel combustion sources are devices that combust solid, liquid, or gaseo fuel, generally for the purposes of producing electricity, generating steam, or provide useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste by removing combustible matter. Stationary fuel combustion source could include boilers, simple and combined-cycle combustion turbines, engines, incinerators, and process heaters.

These emissions are usually referred to as fugitive emissions.

Q1

Quiz

The energy sector accounts for the majority of GHG emissions for most countries –

True or False? TRUE

Q2

Which GHG dominates emissions from the energy sector?

- N₂O (Nitrous oxide)
- ; CO (Carbon monoxide)
- $V \cdot CO_2$ (Carbon dioxide)
 - CH₄ (methane)

Q3

Which source is not covered under the energy sector?

- Exploration of oil and gas
- V• Use of fossil fuels in chemical reactions in industrial processes
 - Use of fuels in transport
 - Fuel transformation from primary to secondary fuels
 - Distribution of liquid fuels

Special cases – reported, but not counted towards total emissions

- CO₂ emissions from biomass combustion are not included in the national total. They are reported separately (*information or memo item*)
- Non-CO₂ emissions (CH₄, N₂O) are reported in the national total
- Net carbon emissions are accounted for in the LULUCF/AFOLU sector
- Peat is treated as a fossil fuel

International bunkers

Aviation and Shipping (water-borne navigation):

- Domestic emissions included in National Total
- International emissions reported separately as "Bunker Fuels"
- Domestic trips are journeys between points in one country
- International trips between countries

How to recognize international bunkers?

Criteria for defining international or domestic aviation

applies to individual legs of journeys with more than one take-off and landing

Journey type between two airports	Domestic	International
Departs and arrives in same country	Yes	No
Departs from one country and arrives in another	No	Yes

Quiz

A flight from Wellington (New Zealand) to Seoul (South Korea) has two connection stops - one in Auckland (New Zealand) and one in Hong Kong (China).

Emissions for which legs of the flight should be counted towards the national emissions and which should be reported as an information (memo) item only:

Flight leg	Is this leg Domestic (D) or International (I)?	Counted to the national total emissions? (Yes/No)	Reported as a memo item only? (Yes/No)	
Wellington - Auckland	D	Yes	No	
Auckland – Hong Kong	I	No	Yes	
Hong Kong- Seoul	I	No	Yes	

Energy Sector: Scope

Exploration and exploitation of primary energy sources

Conversion of primary energy sources into more useable energy forms in refineries and power plants

Transmission and distribution of fuels

Use of fuels in stationary and mobile applications

Carbon capture and storage

Waste as a Fuel

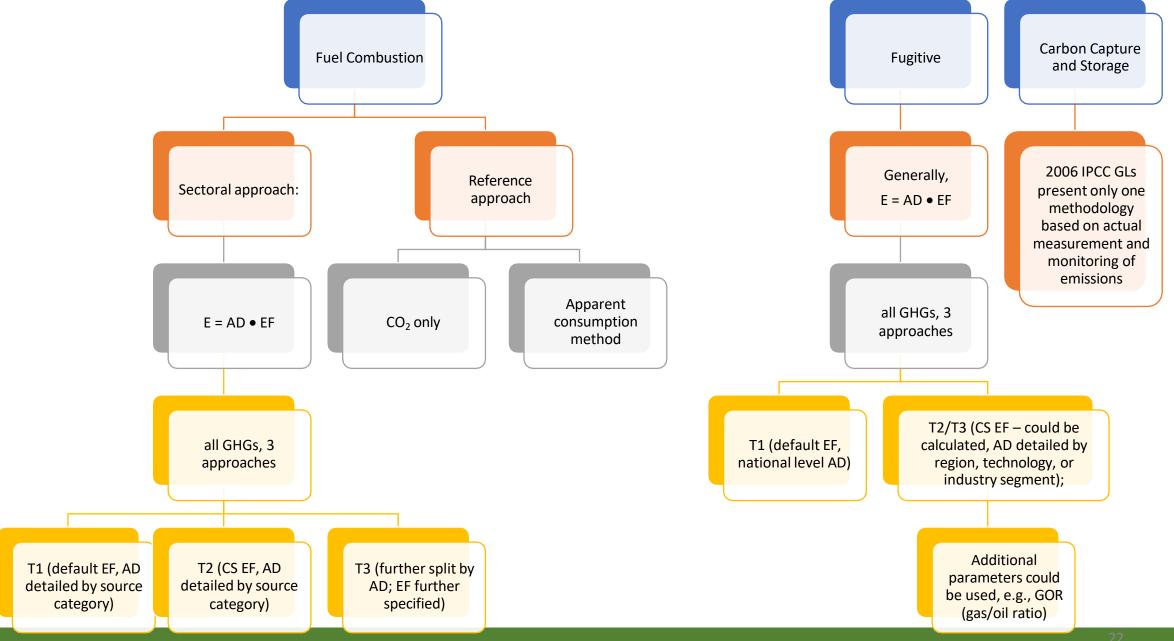
- Some waste incinerators also produce heat or power
- In such cases the waste stream will show up in national energy statistics and it is good practice to report these emissions under the energy sector
- This could lead to double counting when in the waste sector the total volume of waste is used to estimate emissions
- Only the fossil fuel derived fraction of CO₂ from waste is included in national total emissions

Approach to estimating emissions

- ✓ Collect activity data (AD) and metadata
- ✓ Preliminary data processing
- ✓ Select emission factors (EFs) and parameters
- ✓ Document assumptions
- ✓ Use IPCC equations or country-specific models to estimate emissions

Reference approach

 Estimate apparent consumption of fuels within the country.


Sectoral approach

 Collect actual consumption statistics by fuel type and economic sector

Tier 2 or 3

 Collect actual fuel consumption statistics by fuel type, economic sector and combustion technology type.

Common methods to calculate emissions from the energy sector

Reference approach

Reference Approach is a top-down approach, using national fuel supply data to calculate the emissions of CO₂ from fuel combustion:

- CO₂ only
- Uses Apparent Consumption
- Applies "excluded carbon"
- Used as a check for Sectoral Approach (an example of Verification)

Apparent consumption = Production + Import - Export - International bunker - Stock change

CO₂ emissions = (Apparent Consumption - Excluded Carbon) * EF

An increase in stocks is a positive stock change that withdraws supply from consumption.

A stock reduction is a negative stock change that, when subtracted from the equation, causes an increase in apparent consumption.

Basic steps for estimating CO₂

- 1. Collect fuel consumption data.
 - 2. Convert fuel data to a common energy unit.
 - 3. Calculate the Apparent consumption
 - 4. Select carbon content factors for each fossil fuel/product type and estimate the total carbon content of fuels consumed.
 - 5. Subtract the amount of carbon stored in products for long periods of time.
 - 6. Multiply by an oxidation factor.
 - 7. Convert carbon to full molecular weight of CO₂ and sum across all fuels.

Excluded Carbon/Non-Energy Use of Fuels

	TABLE 1.2 Types of use and examples of fuels used for No.	ON-ENERGY APPLICATIONS		
Type of use	Example of fuel types	Product/process	Chapter	
Feedstock	natural gas, oils, coal	ammonia	3.2	
	naphtha, natural gas, ethane, propane, butane, gas oil, fuel oils	methanol, olefins (ethylene, propylene), carbon black	3.9	
Reductant	petroleum coke	carbides	3.6	
	coal, petroleum coke	titanium dioxide	3.7	
	metallurgical cokes, pulverised coal, natural gas	iron and steel (primary)	4.2	
	metallurgical cokes	ferroalloys	4.3	
	petroleum coke, pitch (anodes)	aluminium ¹	4.4	
	metallurgical coke, coal	lead	4.6	
	metallurgical coke, coal	zinc	4.7	
Non-energy product	lubricants	lubricating properties	5.2	
	paraffin waxes	misc. (e.g., candles, coating)	5.3	
	bitumen (asphalt)	road paving and roofing	5.4	
	white spirit ² , some aromatics	as solvent (paint, dry cleaning)	5.5	

Also used in secondary steel production (in electric arc furnaces) (see Chapter 4.2).

² Also known as mineral turpentine, petroleum spirits, industrial spirit ('SBP').

Oxidation factors – points to remember

Oxidation factor is used to account for the small amount of unoxidized carbon that is left in ash or soot.

Default Oxidation factor = 1 (2006 IPCC GLs), but this is an approximation

Amount of carbon remaining unoxidized should be low for oil and natural gas combustion

It can be larger and more variable for coal combustion

When national oxidation factors are not available, use IPCC default factors

Oxidation factor values for different fuel types

Natural gas

- Less than 1% left unburned
- Remains as soot in the burner, stack or environment
- Higher for flares in the oil and gas industry
- Closer to 100% for efficient turbines.

Oil

- 1.5 ± 1 per cent left unburned
- Closer to 100% in efficient devices with catalytic converters.

Coal

- Range from 0.6% to 6.6% unburned
- Primarily in the form of bottom and fly ash

Biomass

- Can range widely, especially for open combustion
- For closed combustion (e.g. boiler), the range is from 1% to 10%
- No IPCC default.

Quiz

Calculate CO_2 emissions from the use of natural gas in country X using the data below and the Reference approach:

Please note:

- Consider that fraction of oxidized carbon = 1;
- 1 kt = 1000 t
- To convert C emissions to CO_2 emissions: $E(CO_2) = E(C) \bullet 44/12 = E(C) \bullet 3.667$

CO₂ emissions = (Apparent Consumption - Excluded Carbon) * EF Apparent consumption = Production + Import - Export - International bunker - Stock change

Production	Imports	Exports	International	Stock	Apparent	Carbon	Carbon	Carbon	Net C	CO ₂
(TJ)	(TJ)	(TJ)	Bunkers	Change	Consumption	EF	Emissions	excluded	Emissions	emissions
			(TJ)	(TJ)	(TJ)	(t C/TJ)	(kt C)	(kt C)	(kt C)	(kt CO ₂)
										. 27
21000	NO	NO		1000	20,000	15	300	200	100	366.7
21000	110	110		1000	20,000	13	300	200	700	300.7

Thank you