

Workshop on Enhanced Transparency Framework under the Paris Agreement IPCC Software Energy Sector Demonstration Slides: Pacific Region

> Venue: Crown Beach Resort & Spa, Rarotonga, Cook Islands Date: 25-28 March 2025

> > Sekai Ngarize Climate Transparency Advisor : UNEP-CCC

Outline

Step A: Set up Fuel Manager

Step B: Fuel Consumption Data

Step C: Fuel Consumption Emissions

Step C: Fuel Consumption Emissions – EFs

Comparing Sectoral and Reference Approaches (skip)

Access CRT Interface in Software Create New CRT Data Set Open CRTs Open CRTs – Functionalities Generate JSON

Step A: Set-up Fuel Manager

The **Fuel Manager** contains the following for each fuel: -- name, carbon content and calorific value.

 Access Fuel Manager from main menu or any category level worksheet before you start a GHG Inventory, can modify Fuel Manager later.

If you change parameters, data in worksheets automatically linked from the **Fuel Manager** are updated.

• Select NCV (Net Calorific Value) or GCV (Gross Calorific Value) as the Conversion Factor Type.

Note that:

- For each IPCC default fuel, when NCV is selected, the Calorific Value and Carbon Content are pre-filled with IPCC default values, may overwrite with user-specific values.
- For GCV, no IPCC default values are available, requires data to be entered by the user.

Fuel Type	Y Euel Name	Primary Fuel V	Nel Calorific Value	Carbon content (NCV)
iquid Fuels	Aviation Gasoline		44.3	19.1
	Bitumen		40.2	22
	Crude Oil		42.3	20
	Ethane		46.4	16.8
	Gas/Diesel Oil	0	43	20.2
	Jet Gasoline	0	44.3	19.1
	Jet Kerosene		44.1	19.5
	Liquefied Petroleum Gases		47.3	17.2
	Lubricanta	0	40.2	20
	Motor Gasoline		44.3	18.5
	Naphtha		44.5	21
	Natural Gas Liquids	8	44.2	17.5
	Orimulation	0	27.5	2
	Other Kerosene		43.8	19.6
	Other Petroleum Products		40.2	20
	Paraffin Waxes	0	40.2	21
	Petroleum Coke	0	32.5	26.6
	Refinery Feedstocks		43	20
	Refinery Gas		49.5	15.7
	Residual Fuel Oil	0	40.4	21.1
	Shale Oil		38.1	20
	White Spirit and S8P		40.2	20
lid Fuels	Anthracite		26.7	26.8
	Blast Furnace Gas		2.47	70.8
	Brown Coal Briguettes	0	20.7	26.6
	Coal Tar		28	22

type and name of default fuent carried be changest and default fuent carried be deteted. Selected Convention Factor Type is automatically applied in all the relevant worksheets across all the Inventory Years

Any user-specific biomash-derived fuel, e.g. dung, not covered in the definitions in table 1.1 (Vio.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "biomash-derived" waste fuels are all considered "waste derived Any user-specific fosal fuel not covered in the definitions in table 1.1 (Vio.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "Other fosal fuels"; these fuels are all considered "waste derived"

ave Undo Close

Step A: Set-up Fuel Manager

• For each new (user-specific) fuel entry the following steps apply:

- 1. Click on the **asterisk** in the bottom-most row to add the user-specific fuel.
- 2. Select **fuel type** from the drop-down menu.
- 3. Enter specific fuel name.
- 4. Indicate (checkbox) if a **primary fuel** or not.
- 5. Enter its **calorific value** in TJ/Gg, (either NCV or GCV according to the selection made for entire Fuel Manager).
- 6. Enter **carbon content** in kg C/GJ.

7. Save

• [To single out user-defined fuels only, the corresponding box

• on the window's top border shall be marked].

Example: New fuel type: Northern Coal Mine, primary fuel, NCV=20 and CC=27

	Gas Works Gas		100000	A State of Links and
			38.7	12
	Lignite		11.5	27
	Oil Shale / Tar Sands		8.9	29
	Other Bituminous Coal	2	25.8	25
	Oxygen Steel Furnace Gas	0	7.06	49
	Patent Fuel		20.7	26
	Sub-Bituminous Coal	2	18.9	26
Gaseous Fuels	Natural Gas (Dry)		48	15
Other Fossil Fuels	Industrial Wastes	2	11	
	Municipal Wastes (nonbiomass fraction)		10	
	Waste Oils		40.2	
Peat	Peat		9.76	28
Biomass - solid	Charcoal	0	29.5	30
	Other Primary Solid Biomass	0	11.6	27
	Wood/Wood Waste	0	15.6	30
Bkomass - liquid	Biodiesels	0	27	19
	Biogasoline	0	27	19
Biomass - liquid	Hydropower	2		
Biomass - liquid	Other Liquid Biofuels		27.4	21
Biomass - liquid	Solar Power		0	
Biomass - liquid	Sulphite lyes (Black Liquor)		11.8	
Biomass - gas	Landfill Gas	0	50.4	14
	Other Biogas		50.4	14
	Sludge Gas	4 0	50.4	14
Biomass - other	Municipal Wastes (bion action)		11.6	27
Collid Fronte	Northern Coal Mine		20	

Step B: Fuel Consumption Data

Then, compile worksheet Fuel Consumption Data either with a single row of data for the entire category or with subnational aggregations.

Then, for each subdivision in <u>Column |S|</u> data are entered row by row as follows:

1. <u>Column |F|:</u> select each fuel used from the drop-down menu (one row for each fuel) (Note that fuels shown in the dropdown are those listed in the Fuel Manager. User can filter fuels shown in the "Fuel Type" bar at the top)

2. <u>Column |U|:</u> enter unit of fuel consumption data (e.g. Gg, TJ, m³). To enter a user-specific unit (e.g. m3) select *Gg (Manual CF)* from the dropdown menu and overwrite *Gg* with the user-specific unit.

3. <u>Column |C|:</u> enter corresponding amount of fuel consumed.

4. <u>Column [CF]</u>: enter conversion factor to convert the consumption unit to an energy unit (TJ). Note that where Gg of fuel are entered, the NCV/GCV is automatically sourced from the Fuel Manager; while if the consumption unit is TJ the Software compiles the conversion factor with the value 1. Where other units are applied (e.g. m³) the user shall enter the relevant conversion factor here.

•• 📲 • tergovernmental panel on climate of a

Step C: Fuel Consumption Emissions

Then, the **Fuel Combustion Emissions** worksheet is pre-filled by the *Software* with rows corresponding to the number of subdivision/fuel combinations entered in worksheet **Fuel Consumption Data**.

1. For each row, users click the symbol " \boxplus " on the left of the row to open a drop-down table where EF values are to be compiled.

2. Drop-down table can be filled: either with a single row of data, this is the case for IPCC default method; or with several rows, one row for each technology type, this is the case for IPCC Tier 3 method.

 Again the "Fuel Type" bar available to enter data for each fuel one by one.

2

atego ubcat	ry: Fuel Combustion Act egory: 1.A.1.a.i - Electricity Fuel Combustion Em	tivities Genera									20
ata Tuel Ty	ype (All fuels)	~									
	(All fuels) Liquid Fuels				E	quation 2.4					
	Solid Fuels Gaseous Fuels Other Fossil Fuels		Fue	el .	Total co	nsumption TJ)	CO2 Emission (Gg CO2)	15	CH4 Emissions (Gg CH4)	N2O Em (Gg	issions N20)
-	Peat	7	F	Δ.Υ		TC	CO2		CH4	N	10
9-	North Biomass - Iouid	Mur	icipal Wastes (nonbio	mass fraction)		4,000		0		0	
9-	Powe Biomass - gas	Cha	rcoal			200		17.4	0.	02	0.00
	Powe Biomass - other	Liqu	efied Petroleum Gase	5		2,900		177.99	0.001	45	0.0000
9	Unspecified	Anti	racite			40,000		3,922	0.	76	0.0
-	Unspecified	Gas	/Diesel Oil			1,000		80	0.0	03	0.0
3-	Unspecified Anthrach Unspecified Gas/Diet Unspecified Natural C		ural Gas (Dry)			10,000		558	0.	01	0.0
	Unspecified	Pea	t :			3,500		366	0.00	35	0.005
	Te	schnology			CO2		CH	4	N2C)	
	Type of Technology	Technology penetration (%)	Consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
	т	P	C=TC'(P/100)	EF(CO2)	z	C02=C*EF (CO2)/10*6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10*6	
	Technology 3	10	3.500	106,000	5	366	1	0.0035	1.5	0.00525	2

Step C: Fuel Consumption Emissions - EFs

1. <u>Column [T]:</u> enter technology type. Where the IPCC default method is applied, the notation "unspecified" is selected.

2. <u>Column [P]</u>: enter technology penetration rate (%) associated with each technology type. The technology penetration rate apportions the total fuel consumed in the subdivision among technology types. Where the IPCC default method is applied, the value 100 is automatically entered by the *Software*. (*For each fuel in each subdivision, summing up technology penetration rates shall = 100%*)

3. <u>Column $|EF(CO_2)|</u>$: select from the drop-down menu the IPCC default value or, for user-specific fuels entered in the **Fuel Manager**, the value calculated by the *Software* as the carbon content multiplied by 44/12; otherwise enter the technology-type-specific value, in kg of CO₂ per TJ.</u>

4. <u>Column $|EF(CH_4)|$ and Column $|EF(N_2O)|$:</u> select from the drop-down menu the IPCC default value or enter the technology- type-specific value, in kg of CH₄ per TJ or kg of N₂O per TJ, respectively.

Step D: Fuel Combustion Emissions-Results

1. To estimate the total CO_2 emitted into the atmosphere, the amount of CO_2 captured instead of emitted into the atmosphere is to be entered in Gg CO_2 in <u>Column [Z]</u> of worksheet Fuel Combustion Emissions.

2. Then, for each GHG, emissions from each source are calculated by the *Software*, in mass unit (Gg). Total emissions from each source of stationary combustion is the sum of all emissions from combustion of all fuels listed in all subdivisions.

uel Consumptio Vorksheet Sector: Category: Subcategory: Sheet: Data Fuel Type (/	an Data Fuel Combus Energy Fuel Combustion Act 1 A 1 a I - Electricity Fuel Combustion Em All fuels)	stion Emissions tivities Generation issions									2022
					Eq	uation 2.4		141-1			-
	Subdivision		Fue	1	Total cor (T	sumption J)	CO2 Emission: (Gg CO2)	s	CH4 Emissions (Gg CH4)	NZO E	missions 1 N2O)
	S	۵V	F	Δ 🖓	T	C	C02		CH4	,	120
Northe	m	Munic	cipal Wastes (nonbio	mass fraction)		4,000		383.48	0.1	32	0.0176
	Te	chnology		_	CÖZ		CH4		N20)	
ту	pe of Technology	Technology penetration (%)	Consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
	τ	P	C=TC*(P/100)	EF(CO2)	z	CO2=C*EF (CO2)/10*6-Z	EF(CH4)	CH4+C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10*6	
Ter	chnology 1	60	2,400	91,700	10	210.08	30	0.072	4	0.0096	2
* Tei	chnology 2	€ 50	2,000	91,700	10	173.4	30	0.06	4 🗸	0.008	2 a 🤊 🗙
Total			4 400			383.48	6	0.132		0.0176	

The *Software* has alerted you that the technology penetration rates are greater than 100%.

SEVENTH ASSESSMENT CYCLE

Comparing Sectoral and Reference Approaches

- You have just estimated GHG emissions from electricity generation – this estimation methodology is based on sectoral consumption, and part of the Sectoral Approach.
- The Reference Approach is designed to calculate CO₂ emissions from fuel combustion, starting from high-level energy supply data. This approach does not distinguish between different source categories within the energy sector and only estimates total emissions from source category 1.A Fuel Combustion.

Tools Export/Import Reports Window Help Inventory Year Administrate Worksheets Reference Approach Reference Approach Data Estimating Excluded Carbon Comparison Allocati **Uncertainty Analysis** Sector Energy Key Category Analysis Category Fuel combustion activities Category code 1.A Sheet Comparison of CO2 Emissions from Fuel Combustion Fuel Types Liquid Foels: 22 item(s) 3,900 257,99 -100 40.000 3,922 -100 Solid Fuels: 16 item/s) Baseous Fuels: Titem(s) 10.000 558 Other Fossil Fuels: 3 item(s) 4,400 383.48 -100 rimary Fuels Industrial Wastes 4,400 383.48 Municipal Wastes (nonbio -100 Weste Oils Total 4,400 383.48 -100 Peat 1 item(s) [otal 61,800 5,487.47 -100

- The *Software* can calculate the Reference Approach and make a comparison between emissions estimated using the Reference and Sectoral Approaches.
- In the **Comparison tab** of the Reference Approach menu, the energy consumption and emissions from the data entered for electricity generation (under Sectoral Approach).

Main menu \rightarrow Tools \rightarrow Reference

Comparing Sectoral and Reference Approaches Application Database Inventory Year Administrate Worksheets Tools Expo Database Inventory Year Administrate Worksheets Tools Export/Import Reports Window

Reference Approach Data Estimating Excluded Carbon Comparison Allocation of CO2 from NEU

The Software calculates CO_2 emissions from fuel combustion categories for the top-down reference approach using the following worksheets:

- **Fuel Manager**: information on *carbon content* and *calorific value*
- **Reference Approach Data:** for each fuel type calculates apparent consumption; uses data calorific value and carbon content (filled in automatically from the Fuel Manager), the excluded carbon, and the fraction oxidized. From this information the worksheet calculates actual CO_2 emissions.
- Estimating Excluded Carbon: contains for specific fuels the amount of • the total estimated quantity of carbon which does not lead to fuel combustion emissions, calculates the amount of carbon that shall be excluded from the emissions.
- **Comparison**: Compares summary information on total estimated AD and • CO₂ emissions from the Reference and Sectoral approaches.
- Allocation of CO₂ from NEU summarizes the total CO₂ excluded from • the reference approach, by fuel. This worksheet allows for reporting the CO₂ emissions from NEU reported elsewhere in the NGHGI, identifying in which category they are reported.

Help

Step B. Reference Approach Data

We have already explored the Fuel Manager, so here we start with Step B. Reference Approach Data. For each fuel, enter the following information:

- 1. Column |Unit|: select or enter manually the measurement unit used (e.g. Gg, TJ, m³). (see "+" sign to expand to the full fuel list)
- **2. Column |A|:** input the amount of production of the fuel (primary fuels only)
- 3. Column |B|: input the amount of imported fuel
- 4. Column |C|: input the amount of exported fuel
- **5. Column |D|:** input the amount of fuel used for international bunkers, if applicable

6. Column |E|: input the amount of stock change. Note that an increase in stocks is a positive stock change which withdraws supply from consumption. A stock reduction is a negative stock change which, when subtracted in the equation, causes an increase in apparent consumption

Step B. Reference Approach Data

INTERGOVERNMENTAL PANEL ON CLIMBIC CHBRC

For each fuel, enter the following information *(continued)*:

7. Column |F|: the Software estimates the amount of apparent consumption of the fuel.

8. Column |G|: conversion factor in (TJ/Unit) is filled automatically from the Fuel Manager.

Note that where Gg of fuel are converted to TJ, the NCV/GCV is sourced from the Fuel Manager and compiled by the Software as a conversion factor; while if the consumption unit is TJ, the Software compiles the conversion factor cell with the value 1. Where other units are applied (e.g. m³) the user shall enter relevant conversion unit here.

ory Fuelo orycode 1.A CO2fr	ombustion activities om energy sources - Reference	Approach						7	8						2
			1		5	lep 1			Ste	¢ 2	Re	o 3	1 516	p.4	
			Production (Unit)	imports (Unit)	Experts (Unit)	International Dunkers (Unit)	Slock change (Unit)	Apparent Consumption (Unit)	Conversion Factor (T.I.Qnit)	Apparent Consumption (7J)	Carbon sontent (f CrT_r)	Total Carbon (Eg C)	Excluded Garbon (Gg C)	Net Carbon Emissions (Og C)	Fraction of Carbon Oxidised
Eur	HTypes	Unite	A		c	D	E	T1448-C-D-E	G	Harrig		J=H11/1000	K	Led-K	м
id Fuels: 22 item(s	Y									3.090		53,418		53,418	
Primary Fuels	Crude Oil	Ga			1		1	0	42.3	0	20	0		0	
No. Caller	Natural Gas Liquids	Ga						0	44.2	Ø	17.5	0		0	
	Orimulaion	Gg						0	27.5	0	21	0		0	
Secondary Fuels	Aviation Gasoline	Gg						0	44.3	0	19.1	0	5	0	-
	Bitumen	Gg						0	40.2	0	22	0		0	
	Ethane	Gg						0	46.4	0	16.8	0		0	
	Gan/Diesel Oil	T4		100		10		90	1	90	20.2	1.818		1.818	
	Jet Gasoline	Gg						0	44.3	0	19.1	0		0	
	Jet Kerosene	Gg						0	44.1	D	19.5	0		0	
	Liquefied Petroleum Geses	77		3.000				3.000	1	3.000	17,2	51.6		51.5	
	Lubricenta	Gg						0	40.2	0	20	0		0	
	Motor Gasoline	Gg						-0	44.3	0	18.9	D	ş	0	
	Nepřitke	Gg						0	44.5	0	20	0	{	0	
	Other Kerosene	Gg						0	43.8	0	15.6	0		0	
	Other Petroleum Products	Gg						Ó	40.2	0	-20	0		ė	
	Parattin Waxes	Gg						0	40.2	0	20	Ð		0	
	Petroleum Coke	Gg						0	32.5	0	26.6	0		0	
	Refinery Feedblocks	Gg						0	43	0	20	0		0	
	Refinery Gas	Gg						0	49.5	0	15.7	0		0	
	Residual Fuel Oil	Gg						0	40.4	0	21.1	0		0	
	Shale Oil	Gg						0	38.1	0	20	0		0	
	White Spirit and SBP	Gg						0	40.2	D	20	0		0	
Fuels: 16 item(s)										40,500		1,085.4		1.085.4	
rimary Fuels	Aethracite	TJ	41,000			500	1	40.500	Ť	40,500	26.8	1,085.4		1.085.4	
0.0000000000000000000000000000000000000	Coking Coal	Gg				-		0	28.2	0	25.8	D	8	0	
	Lignite	Gg						0	11.9	Ó	27.6	0	1	Ó	
	Northern Coal Mine	Gg						0	20	0	27	0		0	
	Oil Shale / Ter Sands	Gg						0	8.9	D	29.1	0		0	
	Other Bituminous Coel	Gg						0	25.8	D	25.8	0	(0	

Fuel Manager Export to Excel Import from Excel

Step C. Estimating Excluded Carbon

For each fuel in the Column |Fuel Types|, enter the following information:

- 1. Column |A|: enter the estimated quantity of the fuel not used for combustion purposes (e.g. natural gas used as a feedstock for ammonia production, or coking coal used in the iron and steel industry).
- 2. Column |Unit|: select or enter manually the measurement unit used (e.g. Gg, TJ, m³).

3. Column |B|: conversion factor in TJ/Unit is filled automatically from the Fuel Manager.

4. Column |D|: carbon content is filled automatically from the Fuel Manager in t C/TJ.

5. Excluded carbon in **Column |E|** is then automatically included in **Column |K|** of the **Reference Approach Data** tab.

Puet Types Liquid Fuels: 22 hen(a) Aviation Gasoline Bitumen Crude Ou Ethane GasolisesI Oi Jet Gasoline Liquided Peroleum Gases Liquided Peroleum Gases Lucionalis Motor Gasoline Natorial Gas Liquide Ormulation Other Renoleum Products	1,000	6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6g	9 443 402 423 464 43 443 443 443 443 443 443 443 443	G+A×8 1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 19.1 22 20 16.5 20.2 19.1 19.1 19.5 19.5 19.5 19.5 20.2 20 20 20 20 20 20 20 20 20 20 20 20 20	E = C + D / 1000 17.2 0 cf 0 cf 0 cf 0 cf 0 cf 0 cf 0 cf 17.2 0 cf 17.2
Lepid Fuels: 22 hem(s) Aviation Gasofine Bithumon Crude OI Ethone Gaso/Desel OI Jet Canobine Jet Konsere Lucusfied Petroleum Gases Lucusfied Petroleum Gases Lucusfied Petroleum Gases Data Casoline Reporting Natura Gas Louide Orimulation Other Retokeum Products	1,000	6g 6g 6g 6g 6g 6g 6g 11 13 6g 6g 6g 6g 6g	443 402 423 464 43 443 443 1 1 441 1 442 443	1,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19.1 22 20 16.8 20.2 19.1 19.5 17.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 2	11/2 0 37 0 37 0 37 0 37 0 37 0 37 0 37 172 37 41
Avidion Gasoline Bitumen Crude Oil Ethane Gas-Diesel Oil Jet Graobine Lider Graobine Let Karosene Lubricatis Motor Gasoline Natoral Gas Liquide Ormulaise Other Kerosene Other Kerosene Other Kerosene Other Kerosene	1,000	6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6g 6	443 402 423 464 43 443 443 443 443 443 443 443 443	0 0 0 0 0 0 1,000 1,000	15.1 22 20 16.8 202 19.1 19.1 19.5 17.2 20	
Bitumes Crude Oil Ethane GasDissel Oil Jet Gasoline Jet Gasoline Jet Farisece Luncation Mater Gasoline Mater Gasoline Natural Gas Liquids Orimulation Other Renotem Products	1,000	Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg Gg	402 423 464 43 443 443 1 1 402 402 443	0 0 0 0 0 0 1,000 0 0 0 0 0	22 20 16.8 20.2 19.1 19.5 17.2 2	
Crude Oil Ethene Gas Desel Oil Jet Catoline Laborante Mater Gasoline Mater Gasoline Natural Gasoline Natural Gasoline Orimulation Other Xerosene Other Secone Other Secone Other Secone	-1,000	Gg Gg Gg Gg Gg Gg Gg Gg Gg	423 466 43 443 443 1 1 441 1 442 443	0 0 0 0 1000 0	20 16.8 20.2 19.1 19.5 17.2 20	0 27 6 27 0 27 0 27 0 27 17,2 27 44
Ethene Gas Desel Ol Jet Gasoline Jet Karosene U Luptried Petroleum Gases Lufricanis Motor Gaseline Natural Gas Lipude Orimulation Other Kerosene Other Kerosene	1,000	Gg Gg Gg TJ Gg Gg Gg	454 43 443 441 1 402 402	0 0 0 1,000	76.8 20.2 19.1 19.5 17.2	0 72 0 72 0 72 0 72 0 72 172 72 W V
GacDiesel Gil Jet Gasoline Jet Krosene Lutricatio Phroteum Gases Lutricatio Motor Gasoline Natural Gas Louds Otrimulaide Other Recoeme Other Recoeme	1,000	Gg Gg Gg Gg Gg Gg Gg	43 443 441 1 402 443	0 0 0 1,000 0	20.2 19.1 19.5 17.2 20	0 2* 0 2* 0 2* 172 2* 44
Jet Gasoline Jet Karssene Jet Karssene Jet Karssene Motor Gaseline Motor Gasoline Motor Gasoline Natural Gas Lipuide Ormulation Other Kerolene Other Peroleme Products	1,000	6g 6g 7J 6g 6g	443 441 1 492 443	0. 0 1.000 9	19.1 19.5 17.2 20	0 7 0 7 172 7 4
Jet Krosene Liquefied Petroleum Gases Lutricants Motor Gasoline Natural Gas Liquets Ormulation Other Kerosene Other Peroleum Products	1,000	Gg TJ Gg Gg	44.1 1 402 443	0 1,000 0	19.5 17.2 20	0 2* 17-2 2* 64 *
Laurind Tetroleum Gases Ladicattle Ladicattle Mater Gaseline Natural Gaseline Orimulation Other Aerosene Other Periodem Products	-1,000	TJ Gg Gg Gg	1 402 443	1,000	17.2	17.2 3' al
Lufricants Matri Gascline Natural Gas Lipuda Orimulation Other Verolene Other Perolener Products		Gg Gg Gg	402 443	9	20)	
Motor Gasoline Natural Gas Liquids Ormulation Other Kerosene Other Revoleum Products		Gg ug	44.3			
Natural Gas Liquids Ormulaion Other Ketosene Other Petroleum Products		60		φ.	18.9	0 🛫
Natural Gas Liquids Orimulation Other Ketrolene Other Petroleum Products		100 M	445		20	0
Ormulaton Other Kerosene Other Petroleum Products	6	Gg	44.2	0	17.5	0 7
Other Retoleum Products	1	Gg	275	•	21	0 7
Other Petroleum Products		Gg	438	0	19.6	0 3*
		ug	40.2	0	20	0.7
Parafilit Waxes		ũg.	40.2	0	20	0 07
Petroleum Coke		Gg	32.5		26.6	0 7
Hennery Feedstocks			43	0	20	
Rennery Gas		ug Ga	47.5	0	15.7	
Shale Oil		ug Ge	404		21.1	
Uthits Could and CDD		Gg	30.1 45.2		20	0 2
Solid Fuels 16 item/s)		09		0	-20	
Gaseous Fuels: 1 item(s)				200		306
Natural Gas (Dry)	200	TJ	1	200	15.3	306 2
Other Fossil Fuels: 3 item(s)				0		0
Dest 1 Jamin						
the intercept						
komass - solid: 3 (tem(s)						
liomass - liquid 6 item(s)				0		0

Step D. Reference Approach Data Tab

Input of EFs for the Reference Approach requires the following steps:

- 1. Column ||: carbon content is filled automatically from the Fuel Manager in t C/TJ.
- 2. Excluded carbon in Column |K| is taken automatically from the Excluded Carbon worksheet

3. Column |M|: enter fraction of oxidized carbon.

Note if no information on this factor is available, the value "1" shall be entered to proceed with calculations

4. Software estimate CO₂ emissions following the Reference Approach

Recall: gray shading means that data contained in that cell are automatically pooled from somewhere else.

						Step 1			Str	p 2	34	ю 3	514	p 4	Ste	þ S	
			Production (Unit)	Importa (Unit)	Exports (Unit)	International Bunkers (Unit)	Disck change (Unit)	Apparent Consumption (Unit)	Conversion Factor (TJ/Unit)	Apparent Consumption (TJ)	Carbon content (1C/TJ)	Total Carbon (Gg.C.)	Excluded Carbon (Gg C)	Net Carbon Emissions (Gg C)	Fraction of Carbon Oxidised	Actual CO2 Emissions (Gg CO2)	
FLO	(Types	Unit	A	8	C	D	E	FHAIB-C-D-E	G	HIFTG	-	J-H*91000	ĸ	L-J-K		No PARANT	
Fuels: 22 item(s))	-					-			3,090		53,418		36,218		132 79933333	
imary Fuels	Crude Oil	Ga				2		0	42.3	0	20	0		0		0 7	
and a second second second	Natural Gas Liquids	Ga						0	44.2	0	17.5	0		0		0 7	
	Onmulsion	Ga						0	27.5	0	21	0		0		0 /	
econdary Fuels	Aviation Gasoline	Gq						0	44.3	0	19.1	0		0		0 7	
	Exturnen	Go						0	40.2	0	22	D		D		0 /	-
	Ethane	Ga						0	46.4	0	16.8	0		D		0 7	-
	Gas/Diesel Oil	TJ		100		10		90	1	50	20.2	1,918		1.818	1	6.566 2	-
	Jet Gasoline	Ga						0	44.3	0	19.1	0		0		0 7	-
Je Lic Lic	Jet Kerosene	Ga						0	44.1	0	19.5	0		0		0 7	-
	Linuefied Petroleum Gases	TJ		3.000				3,000	1	3,000	17.2	51.6	17.2	34.4	1	126 133333	-
	Lubricanta	Ga						0	40.2	0	20	D		0		0 7	-
	Motor Gasoline	Ge		1				Ó.	44.3	0	18.9	D		0	-	0 7	-
	Nachtha	Ga					-	0	44.5	G	20	0		D		0 7	
	Other Kercsene	Ga		-				0	43.8	0	19.6	D		0		0 7	-
	Other Petroleum Products	Ga						0	40.2	0	20	0		0	-	0 7	
	Paraffin Waxes	Ga						0	40.2	0	20	0		0		0 7	-
	Petroleum Coke	Ga						0	32.5	C	26.6	0	-	0		0 /	-
	Refinery Feedstocks	Go						0	43	0	20	0		0		0 /	
	Refinent Gas	Ga						0	49.5	0	15.7	0		0	1	0 7	
	Charles & Carala	0.						0	40.4	0	21.1	0		0		0 /	
	Residual Fuel Oil	G0 .											-				
	Residual Fuel Oil Shale Oil	Gg		1				0	38.1	0	20				· · · · · · · · · · · · · · · · · · ·	0.07	

Step E. Comparison

The *Software* provides results of CO_2 estimations under the Reference and Sectoral approaches and performs a comparison between the two approaches by each fuel, fuel type and total for the NGHGI For each fuel, enter following information:

- Worksheet Comparison presents the results for the Reference Approach, as well as main AD (apparent consumption). This worksheet also summarizes the main AD and CO₂ emissions calculated under the Sectoral Approach, by fuel type. In the Columns [Difference], the Software provides the comparative difference between the Reference and Sectoral approaches in terms of energy consumption and CO₂ emissions.
- The <u>2006 IPCC Guidelines, Section 6.8</u>, provide possible reasons for a gap between the two approaches, (expected to be less than 5%). For higher percent differences, reporting programs typically require users to provide a clear explanation and justification.

In this example, which reason might you provide for the sectoral approach being greater than the reference approach for liquid fuels?

Application	Database	Inventory Year	Administrate Wo	orksheets Too	ls Export/Impor	t Reports	Window Hel	р		
Reference Approa	ch Data Esti	imating Excluded C	Carbon Comparison	Allocation of Cl	02 from NEU					
Sector Category Category code Sheet	Energy Fuel combusti 1.A Comparison of	on activities i CO2 Emissions fror	n Fuel Combustion							
				Referenc	e Approach		Sectoral A	oproach	Diffe	erence
	Fuel Type	5	Apparent Consumption (TJ)	Excluded consumption (TJ)	Apparent Consumption (excluding non- energy use and feedstocks) (TJ)	CO2 Emissions (Gg)	Energy Consumption (TJ)	CO2 Emissions (Gg)	Energy Consumption (%)	CO2 Emissions (%)
Liquid Fuels: 22	2 item(s)		3,090	1,000	2,090	132.79933333	3.900	257.99	-46.41025641	-48.52539504
E Solid Fuels: 16	item(s)		40.500	0	40,500	3,979.8	40.000	3,922	1.25	1.47373789
⊕ Gaseous Fuels	: 1 item(s)		11,900	200	11,700	656.37	10.000	558	17	17.62903226
Other Fossil Fu	uels: 3 item(s)		4.000	0	4,000	363	4,400	383.48	-9.09090909	-5.34056535
			3,500	0	3,500	367.1745	3,500	366	0	0.32090164
Total			62.990	1,200	61.790	5,499.14383	61,800	5,487.47	-0.01618123	0.21273617

Step F. Allocation of CO₂ from NEU

1. Column |CO2neu|: enter the quantity of CO₂ emissions from NEU that is reported elsewhere in the NGHGI, in GgCO₂ (e.g. CO2 emissions from the liquified petroleum gases used in petrochemical production).

2. Column |CAT|: for each relevant fuel, click on the editing box in the left-hand side of the column and select one or more categories of the inventory where these CO_2 emissions are reported.

	CO2 Excluded from Reference Approach (Gg CO2)	CO2 emissions from NEUs reported in the inventory (Gg CO2)	Categories under which CO2 emissions from NEU are reported.		
Fuel Types	EXCLIN	CO2meu	CAT		
ouid Fuels: 22 item(s)	63 06668667		<u>6</u>		
Austice Gradues	93.0000007		····		
Bit man					
Coude Oil				3	+
Ethane			7	1	-
Gas/Diesel Oil			2	7	
Jet Gasoline			7	1	
Jet Kerosene				1	-
Liguefied Petroleum Gases	63.06666667		63 OF Ethylene	17	
Lubricants			7	3	
Notor Gasoline			2	2	
Naphthe			1	3	
Natural Gas Liquids			7	7	
Orimulaion			1	2	
Other Kerosene			1	1	-
Other Petroleum Products			2	3	
Paraffin Waxes			7	31	
Petroleum Coke			3	1	
Refinery Feedstocks			7	A.	
Refinery Gas			2	1	
Residual Fuel Oil			3	2	
Shale Oil			1	1	
White Spirit and SBP			3	11	
olid Fuels: 16 item(s)	0		0		100

Allocation of CO_2 from Non-energy

USE In the **Comparison slide**, the apparent consumption in the Reference approach was **higher than** energy consumption in the Sectoral Approach for gaseous fuels.

- One possible reason, could be that there is double counting of the natural gas used for combustion in the energy sector, and that used as a feedstock for the petrochemical industry (and thus reported in the IPPU sector). Recall, in the Estimating Excluded Carbon worksheet, we estimated 1,000 TJ were excluded?
- In this tab "Allocation of CO₂ from Non-energy use" you can indicate where this LPG was used.
- 1. CO₂ is automatically populated from "Estimating Excluded carbon"
- 2. Enter the CO₂ emissions reported elsewhere
- 3. To select the category(ies) where reported select and check appropriate category(ies)

in the dropdown. This information will be used the UNFCCC ETF Reporting Tool

er Energy Fuel combustion activities nory cede 1.A Allocation of CO2 from NE	u.					20
3	CC2 Excluded from Reference Approach, (Og CC2)	CO2 emissions from NEUs reported in the inventory (Gg CO2)	Calley	ories under which CO2 empsions it	un MEV ere reported	
PostTypes	DOLIS	CODINA		CAT		
ad Fuels: 22 Kern(s)	63 D6666967	6	3	1		1
Anation Gasoline			7			×
Bitamen			2			979
Crude Dil			08	Calippones under m	hich CO2 emissions from NEU are reported	
Ehane			7		Mineral Industry	
Gas-Diesel Oil					Chemical Industry	11
Jint Gesoline					Ammonia Production	1
Jet Kerosene				- <u>n</u>	Cartude Production	
Liqueted retroleum Gases	62.08668657		13 OF Ethylene		Titlanium Dinaide Paratuction	- 1
Lubricarita			1		Externational and Carbon Black Brocketion	
Markets					Mathemat	-
Network Case Linuida					Filedana	- 1
Oriendairen				_	Carlylene .	
Other Kergenne			9		Carpon black	- 1
Other Patroleum Products			1		Petrochemical Production	- 1
Paraffin Maxes			31		Chemical Indusary - Other	1
Petroleum Coke			7		Metal industry	_
Refinery Feedblocks			3		Iron and Steel Production	
Refinery Gas			1		Fernalloys Production	
Residual Fuel Oil			2		Aluminium Production	
Shake Qil			3		Lead Production	
White Spirit and SBP			1 M		Zine Production	
d Fuels: 16 dem(s)	0		0	0	Netal Industry - Other	
eous Fuels: 1 item(s)	1122		1	0	Non-energy Products from Fuels and Solvent.	
Natural Gas (Dry)	11.22	1	1 P Methanol		Lubricant Use	
er Fossil Fuels. 3 item(s)	101		0	0	Paraffin Wax Use	11
e Titem(s)			0		Solvert Use	
mana - amint 3 demini)			-	0	Non-Energy Products - Other	
man limit Citamist				3	IPPU - Other	
mana - mgUID, IS INSTITUS)	0			0	Pulp and Paper	
mass - gas: 3 item(s)	0		0		Food and Beverages Industry	

Access CRT Interface in Software

INTERGOVERNMENTAL PANEL ON CLIMBIC COSO

- 1. Navigate to Main Menu and select "Export/Import"
- 2. Select "Export" and "UNFCCC CRT"

• This opens the **CRT Data Set Manager** interface

Create New CRT Data Set

- 1. Select New CRT Data Set: This action button opens a screen where properties of the new CRT Data Set are specified, managed and exported to JSON independently.
- 2. Name Enter name of new CRT Data Set
- 3. Years Select years to include in your data set
- 4. Save Select Save
- 5. A new data set is created

CRT Data Set Manager 5	- O X
CRT Data Set name	Date created
Vorid test	15.01.2024 17:41:29

NOTES:

- The list of years for selection will include only those years that you have created in the *Software*
- You may save in the JSON a subset of years you have in your CRT data set

SEVENTH ASSESSMENT CYCLE

Open CRTs

 Open Tables is an interface that visualizes the CRT and allows you to review, manage and finalize the data for the CRT across sectors and years for your selected CRT Data Set

1. Highlight the **CRT Data Set** you want to review

2. Select Open Tables

- This action button opens a screen containing CRT for the currently selected CRT Data Set.
- This screen will open in a mode that allows you to switch between the visualized CRT and other *Software* screens (e.g. Worksheets). Only one visualized CRT for one CRT Data Set can be open at a time.

Recall, to access this screen navigate to the Main Menu and select Export/Import / Export / UNFCCC CRT

Open CRTs - Functionalities

Intergovernmental panel on Clim818 Ch8000

- In Open Tables, you can separately visualize each table for each sector and each year and provide additional information that will be needed for your submission in the UNFCCC ETF Reporting Tool.
- In the visualized CRT, you may:
 - **Review** your data, includingdata aggregations
 - Change notation keys
 - Provide explanations for use of the notation keys "IE" (included elsewhere) and "NE" (not estimated) for CRT table 9
 - Provide information on the **method and EFs used**, for Summary 3 of the CRT
 - Designate information as confidential (notation key "C")
 - Draft "Official" comments
 - Provide information for **documentation boxes**
 - Review CRT footnotes
 - Review IPCC Inventory Software Notes

ut [Telle1.Alays1] Table1.Alays2 Table1.Alays3 T	Sabut Alain4 Tablet A	100 Table1	(Als) Table	Add Tab	ut.E.1 Tub	v1.B.2 Tablet.C Table	10								
BLE 1.A(a) SECTORAL BACKGROU contraction activities - sectoral approach (Sheet	UND DATA FOI	RENER	IGY												
PENERGUNE BAD SOUNDERING SINC SPECIALITY	sources themesone	TY BACA	IMPLIER	RAR SCROOL	PET GHS		ENGINEERIN		POUNT CHITMEN			reteration to:	Date warn it cent		
	Cerewarner	ILC/VODV	COE	CHR	100	600	CH4	100	0.00	1	CT	6	Ne l	10	0
				ALC: N	10010		00					uneffect a			
A Fadi conduction	3800714			-		28910A MINA2141	67187 421/3678	164546 35250718	-3040	_	_		_		
Locations	1806-26-2			_	1	167517.64933453	81523539874	2012 611 20164	314						
Solutions	410746.36					23652 30053017	0.404703481	1,21010624	-225						
Caterian fasts (0)	1076360					70374 09035263	81850.3310748	162969-4235764	4051						
Other fossil fuelo (7)	279254.4					14820.3058166	10 7659396	2.1427326	466						
Peat 13	104927.04			_		12611.19104	2.26377248	0.18678006	-626						
Botteta (3)	·821108.3					30700.32068625	123 627 808	41,25(22)47	-383						
A1. Energy industries	410379-84					344.23 776.23333	2,290198	2.524(3)	181						
Louidfade .	.9690				1	6771.812	125412	2 949142	47						
Solutions	106413.54					10764 10732333	10,00014	0.16067	- 16						
Canances famile (6)	190400					11/2/11	8.7504	0.07504							
Other Rassification (7)	35770					5621 SAT	10/11	0.14303	-104						
Pear (SI	19736					6010.018	0.049736	2.374604	- 362						
Biomane (3)	32145					2176.2	1.8577	0.08366	-42						
LA La Public electricity and feet production (3)	131300					11264205	1,7140	0.19335	- 99						
Unpuktituete	11400					1125.34	1.0434	0.000009	-34						
Solidium	\$3000					8057	0.06	0.09	+15						
Gaseras faits (4)	22000					1220.2	0.0222	0.0022							
Other Social Kells (7)	15750					1921,473	1.4725	0.063	-22						
Perat (3)	14000					1470	0.014	0.021	-74						
Bonate (2)	2230			-		238.4	21	0.0018	-10						
AT as Bectrony generation	\$1600	100.00	-		and the second s	5452.09	1,2194	0.06384	-40		1	1 () () () () () () () () () (
Lip.idfuela	. 3900	NCI				247.99	1.0059	0.00089	-10						
330.044	49002	ALL S		-		2027	0.04	81.0				_			
Constant faile (6)	70.00	THE R		_		32	10.01	0.051	-5			-			
Constraints Meta (1)	4000	HL X				356.5	0.12	20%	-10						
	3500	m,x				188	1000	0.00525	72						
	700	m _e r		-		1010	204	0,000	2	_	-	-		-	_
the state of the second state and power personalities	24,50	HCV.				1914,015	0.004	0.0001	-41						
C E E E E E E E E E E E E E E E E E E E	+500	10.5				323.20	131.25	9.0.27				-		-	
2	8000	- mail		-	-	105								+	_
								-							
							- 9	PCC weens Sdag	# (11/80a						
Minimum level of appropriate is reacted to protect uperfide	vital business and mike	in information	i where it w	ald identify p	athida sedip	Word Best Confident al Alto		To implement the area	and note, unless care mark	rolling stapped lett	his CRT with the rote	earlies "C" New Yost T	inter selected in on	arge cells won't change	because of the
Writeway level of appropriate in reacted to protect confide A Party well-collepse rows below TA1.6 and TA1.c (p, h)	vital boones and wilks offer 1 A1 blood 1 A7 c	içi informatio Jevel when a	n where it w at the sate of	uild identify p just be mapric	orbi al ar versio ordote of here	weather or fident al data confidential business and	mikters information and	To implement the auco Orange calls move the	and some uners can mark at contain no information (reliau risconi in t i e ne banki vil	his CRT with the role be calculated subbra	ean key "C" Nive that T scally by the UNFCCC (ents saturated in or eporting tool. No poly	arge cells won't change on by the user in require	d.

Generate JSON

INTERGOVERNMENTAL PANEL ON CLIMSTE COST

- Selecting this button allows you to generate a JSON file for export and subsequent upload to the UNFCCC ETF Reporting Tool.
- All tables of the CRT that belong to the selected CRT Data Set and settings selected below, will be serialized into the JSON file for selected years.
 - 1. Highlight the CRT Data Set for which you want to generate a JSON file.
 - 2. Select Generate JSON
 - **3. Select Sector(s)** you would like to include in the JSON file. You may include one, multiple, or all sectors
 - 4. Select specific table(s) of the CRT you would like to include in the JSON file.
 - 5. Select the Year(s) you want to include in the JSON file. You may, but do not have to, include all years that are in your CRT Data Set.
 - 6. Select "OK"

Notes:

Recall, to access this screen navigate to the Main Menu and select Export/Import / Export / UNFCCC CRT

• At the time of drafting, the F gas tables of the IPPU sector are not yet available for export in JSON format.

Generate JSON

UUGG (NTERGOVERNMENTAL PANEL ON CLIMBTE CHARGE

