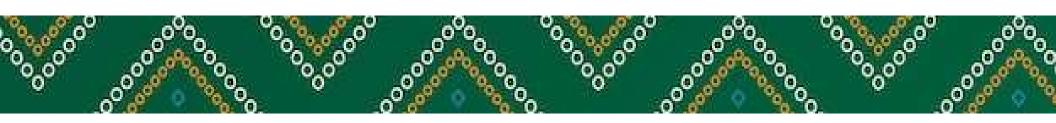
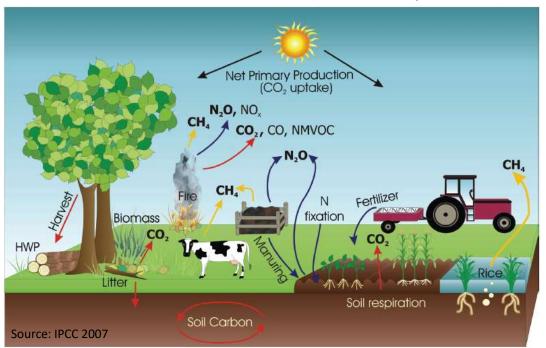
N2O Emissions from Managed Soils


(Capacity Building Program for Indian Experts on National Greenhouse Gas Inventory Preparation as per Enhanced Transparency Framework Guidelines, 25 April 2024 – 1 May 2024, Indian Institute of Technology Gandhinagar, Gujarat, India)

Leandro Buendia, Consultant



AFOLU Categories in the 2006 IPCC Guidelines

Biomass C Stock Changes (3B)

GHG Emissions from Biomass Burning [wild fires, crop residues (3C1)]

CO2 Emission from Liming (3C2)

CO2 Emission from Urea Application (3C3)

Soil N₂O Emissions (3C4, 3C5, and 3C6)

CH4 Emission from Rice Cultivation (3C7)

Soil C Stock Changes (3B)

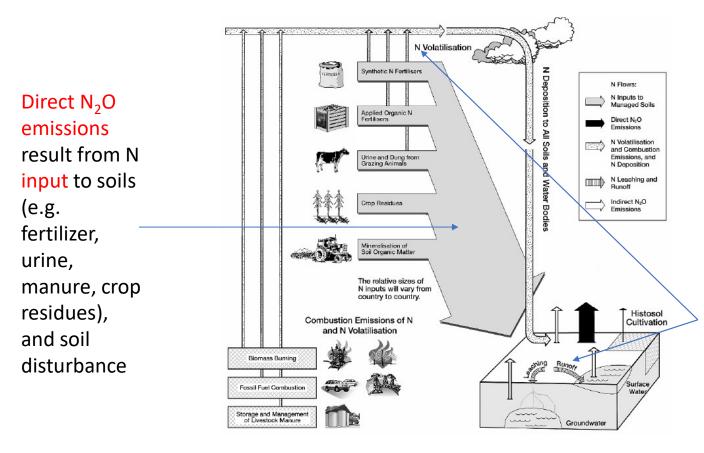
CH4 Emission from Enteric Fermentation (3A1)

CH₄ and N₂O Emission from Manure Management (3A2)

Important Points

Difference between direct and indirect N₂O emissions

Direct N₂O emissions come from the N applied to soils, while Indirect N₂O emissions occur
offsite from the N that is lost to volatilization (to the atmosphere) and leaching/runoff


N sources for calculating N₂O emissions

- 1. Synthetic N fertilizers
- 2. Organic N applications
- 3. Urine and dung N deposited on pasture range and paddock
- 4. N in crop residues
- 5. N mineralization from soils subject to land use change
- 6. Drainage/management of organic soils

Difference between N₂O-N and N₂O?

- N₂O-N refers to the mass of N in the N₂O gas, while N₂O refers to the mass of N₂O gas
- For reporting purposes, N₂O-N is converted to N₂O by multiplying the former with 44/28

N2O Emissions from Managed Soils

Indirect N₂O emissions occur when those N inputs move from the site where they are applied (thru volatilization, leaching, and run-off)

Direct N2O Emissions from Managed Soils

EQUATION 11.1 DIRECT N₂O EMISSIONS FROM MANAGED SOILS (TIER 1) $N_2O_{Direct}-N=N_2O-N_{Ninputs}+N_2O-N_{OS}+N_2O-N_{PRP}$ Where: $N_2O-N_{Ninputs}=\begin{bmatrix} [(F_{SN}+F_{ON}+F_{CR}+F_{SOM})\bullet EF_1]+\\ [(F_{SN}+F_{ON}+F_{CR}+F_{SOM})_{FR}\bullet EF_{1FR}] \end{bmatrix}$ $N_2O-N_{OS}=\begin{bmatrix} (F_{OS,CG,Temp}\bullet EF_{2CG,Temp})+(F_{OS,CG,Trop}\bullet EF_{2CG,Trop})+\\ (F_{OS,F,Temp,NR}\bullet EF_{2F,Temp,NR})+(F_{OS,F,Temp,NP}\bullet EF_{2F,Temp,NP})+\\ (F_{OS,F,Trop}\bullet EF_{2F,Trop}) \end{bmatrix}$ $N_2O-N_{PRP}=\begin{bmatrix} (F_{PRP,CPP}\bullet EF_{3PRP,CPP})+(F_{PRP,SO}\bullet EF_{3PRP,SO}) \end{bmatrix}$

Where:

 $N_2O_{Direct}-N$ = annual direct N_2O-N emissions produced from managed soils, kg N_2O-N yr⁻¹ $N_2O-N_{N \text{ inputs}}$ = annual direct N_2O-N emissions from N inputs to managed soils, kg N_2O-N yr⁻¹ N_2O-N_{OS} = annual direct N_2O-N emissions from managed organic soils, kg N_2O-N yr⁻¹ N_2O-N_{PRP} = annual direct N_2O-N emissions from urine and dung inputs to grazed soils, kg N_2O-N yr⁻¹

Direct N2O Emissions from Managed Soils

$$N_2O\!-\!N_{N\,inputs} = \begin{bmatrix} \left[\left(F_{SN} + F_{ON} + F_{CR} + F_{SOM} \right) \bullet EF_1 \right] + \\ \left[\left(F_{SN} + F_{ON} + F_{CR} + F_{SOM} \right)_{FR} \bullet EF_{1FR} \right] \end{bmatrix}$$

 F_{SN} = annual amount of synthetic fertiliser N applied to soils, kg N yr⁻¹

F_{ON} = annual amount of animal manure, compost, sewage sludge and other organic N additions applied to soils (Note: If including sewage sludge, cross-check with Waste Sector to ensure there is no double counting of N₂O emissions from the N in sewage sludge), kg N yr⁻¹

F_{CR} = annual amount of N in crop residues (above-ground and below-ground), including N-fixing crops, and from forage/pasture renewal, returned to soils, kg N yr⁻¹

F_{SOM} = annual amount of N in mineral soils that is mineralised, in association with loss of soil C from soil organic matter as a result of changes to land use or management, kg N yr⁻¹

Fos = annual area of managed/drained organic soils, ha (Note: the subscripts CG, F, Temp, Trop, NR and NP refer to Cropland and Grassland, Forest Land, Temperate, Tropical, Nutrient Rich, and Nutrient Poor, respectively)

F_{PRP}= annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock, kg N yr⁻¹ (Note: the subscripts CPP and SO refer to Cattle, Poultry and Pigs, and Sheep and Other animals, respectively)

 EF_1 = emission factor for N_2O emissions from N inputs, kg N_2O –N (kg N input)⁻¹(Table 11.1)

EF_{1FR} is the emission factor for N₂O emissions from N inputs to flooded rice, kg N₂O-N (kg N input)⁻¹ (Table 11.1) ⁵

Emission Factor for N2O Emission in Managed Soils

$Table\ 11.1$ Default emission factors to estimate direct N_2O emissions from managed soils		
Emission factor	Default value	Uncertainty range
EF_1 for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003 - 0.03
EF _{1FR} for flooded rice fields [kg N ₂ O-N (kg N) ⁻¹]	0.003	0.000 - 0.006
${\rm EF_{2CG,Temp}}$ for temperate organic crop and grassland soils (kg ${\rm N_2O-N~ha^{-1}})$	8	2 - 24
${\rm EF_{2CG,Trop}}$ for tropical organic crop and grassland soils (kg ${\rm N_2O-N~ha^{-1}})$	16	5 - 48
EF _{2F, Temp, Org, R} for temperate and boreal organic nutrient rich forest soils (kg N ₂ O-N ha ⁻¹)	0.6	0.16 - 2.4
EF _{2F, Temp, Org, P} for temperate and boreal organic nutrient poor forest soils (kg N ₂ O-N ha ⁻¹)	0.1	0.02 - 0.3
EF _{2F, Trop} for tropical organic forest soils (kg N ₂ O-N ha ⁻¹)	8	0 - 24
$EF_{3PRP, CPP}$ for cattle (dairy, non-dairy and buffalo), poultry and pigs $[kg N_2O-N (kg N)^{-1}]$	0.02	0.007 - 0.06
EF _{3PRP, SO} for sheep and 'other animals' [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003 - 0.03

Would be good to know how much N fertilizer went to rice field ...

Sources

EF₁: Bouwman et al. 2002a,b; Stehfest & Bouwman, 2006; Novoa & Tejeda, 2006 in press; EF_{1FR}: Akiyama et al., 2005; EF_{2CG, Temp}, EF_{2CG, Trop}, EF_{2F, Trop}: Klemedtsson et al., 1999, IPCC Good Practice Guidance, 2000; EF_{2F, Temp}: Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002; EF_{3, CPP}, EF_{3, SO}: de Klein, 2004.

Hands-on exercise ...

Using available country-specific data for N inputs to soils, let us use the ALU Software to:

- 1. Enter primary data for mineral N fertilizer and organic amendments (e.g. compost)
- 2. Assign emission factors, including documentation
- Calculate Direct and Indirect N₂O Emissions from application of Mineral N fertilizer and Organic Amendments in Managed Soils
- 4. Report activity data, other related information, and estimates in CRT for BTR.