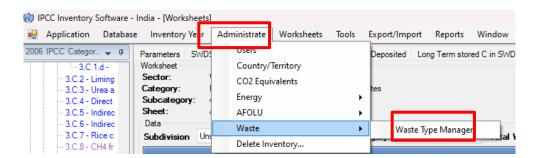


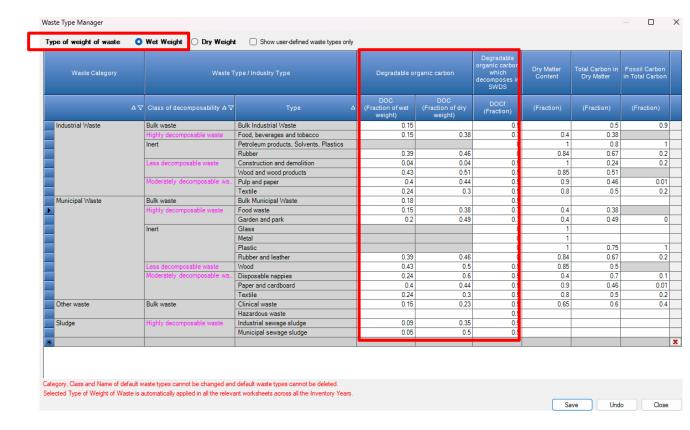
IPCC Inventory Software

Training of GHG Inventory National Experts to prepare first Biennial Transparency Report under ETF of the Paris Agreement:

SWDS

STEP A Waste Type Manager User's Waste Types list, and associated DOC, DOCf, dm, CF, FCF by Subdivision IPCC Tier 1 Equations STEP B Parameters [4.A] by Waste category STEP C SWDS Types – Utilization [4.A] STEP D Activity Data [4.A] by Waste Type Intermediate results [4.A] Amount deposited/Long-term stored C in SWDS/HWP SW deposited in each SWDS, long-term storage of C by SWDS Type STEP E SWDS Types – MCF & OX [4.A.1/4.A.2/4.A.3] Intermediate results [4.A.1/4.A.2/4.A.3] Methane Generated CH₄ quantity generated within the total gas effluent from each SWDS type STEP F Methane Emissions [4.A.1/4.A.2/4.A.3] STEP G [4.A.1/4.A.2/4.A.3]



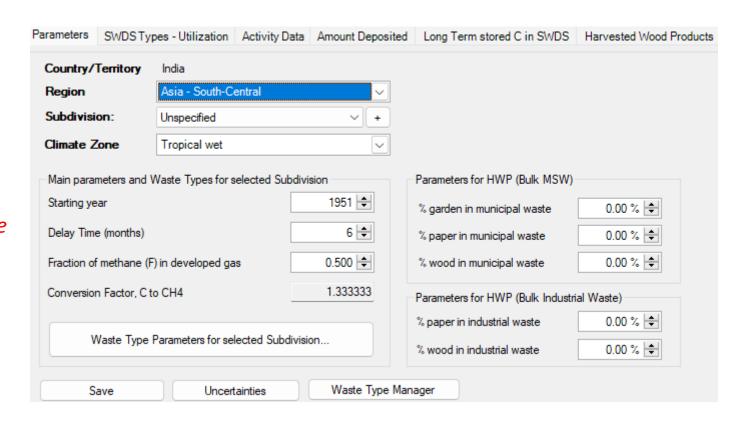

Step A: Set-up Waste Manager

Applies to all Inventory categories of Waste sector that have solid waste

To Report to UNFCCC solid waste data shall be in <a href="https://www.weights.com/weights.

Users can enter new waste types as well as revise IPCC default values of parameters (those in the red box apply to SWDS)

Step B: Set-up Parameters


Region impacts the selection of IPCC default factors for Allocation of waste to SWDS types

Climate zone impacts the selection of IPCC default factors for k (and thus half-life)

Useful to stratify in subdivisions for different climate zones

F set as per IPCC default

Delay time?

Step B: Set-up Parameters

MSW	IPCC default	User value
DOC	0.18	0.11
DOCf	0.5	0.4 (or 0.5?)
k	0.17	0.17

Step C: SWDS utilization

Magenta columns contain SWDS types from 2019 Refinement (required for interoperability with UNFCCC CRTs)

Does India apply 1 single SWDS only?

Useful to stratify in SWDS types

Step D: Activity Data 1951-2020

Subdivision Unspe	ecified ∨ Waste	e Category Municipal Waste	Total Waste Calculated from Populat	tion V Waste Type Amounts	% of Total Waste going to SWDS	~				
						Composition	Composition of waste going to solid waste disposal sites.			
Year	Population (Capita)	Waste per capita (kg/cap/yr)	Total Waste (Gg)	% to SWDS (%)	Total to SWDS (Gg)	Bulk Municipal Waste	Inert	Total		
	A	В	C = A * B * 10^-6	D	E = C * (D/100)	% of E	% of E	%		
1983	170,400,000	200.75	34,207.8	70	23,945.46	100		0 100		
1984	176,100,000	200.75	35,352.075	70	24,746.4525	100		0 100		
1985	181,800,000	200.75	36,496.35	70	25,547.445	100		0 100		
1986	187,500,000	200.75	37,640.625	70	26,348.4375	100		0 100		
1987	193,200,000	200.75	38,784.9	70	27,149.43	100		0 100		
1988	198,900,000	200.75	39,929.175	70	27,950.4225	100		0 100		
1989	204,600,000	200.75	41,073.45	70	28,751.415	100		0 100		
1990	210,300,000	200.75	42,217.725	70	29,552.4075	100		0 100		
1991	216,000,000	200.75	43,362	70	30,353.4	100		0 100		
1992	223,000,000	200.75	44,767.25	70	31,337.075	100		0 100		
1993	230,000,000	200.75	46,172.5	70	32,320.75	100		0 100		
1994	237,000,000	200.75	47,577.75	70	33,304.425	100		0 100		
1995	244,000,000	200.75	48,983	70	34,288.1	100	I .	0 100		
1996	251,000,000	200.75	50,388.25	55	27,713.5375	100		0 100		
1997	258,000,000	200.75	51,793.5	70	36,255.45	100		0 100		
1998	265,000,000	200.75	53,198.75	70	37,239.125	100		0 100		
1999	272,000,000	200.75	54,604	70	38,222.8	100		0 100		
2000	279,000,000	200.75	56,009.25	70	39,206.475	100	I .	0 100		
2001	286,000,000	200.75	57,414.5	70	40,190.15	100	I .	0 100		
2002	295,100,000	200.75	59,241.325	70	41,468.9275	100		0 100		
2003	304,200,000	200.75	61,068.15	70	42,747.705	100		0 100		
2004	313,300,000	200.75	62,894.975	70	44,026.4825	100		0 100		
2005	322,400,000	200.75	64,721.8	70	45,305.26	100	I .	0 100		
2006	331,500,000	200.75	66,548.625	70	46,584.0375	100	I .	0 100		
2007	340,600,000	200.75	68,375.45	70	47,862.815	100		0 100		
2008	349,700,000	200.75	70,202.275	70	49,141.5925	100		0 100		
2009	358,800,000	200.75	72,029.1	70	50,420.37	100		0 100		
2010	367,900,000	200.75	73,855.925	70	51,699.1475	100		0 100		
2011	377,000,000	200.75	75,682.75	70	52,977.925	100	I .	0 100		
2012	386,100,000	200.75	77,509.575	70	54,256.7025	100	I .	0 100		
2013	395,200,000	200.75	79,336.4	70	55,535.48	100		0 100		
2014	404,300,000	200.75	81,163.225	70	56,814.2575	100		0 100		
2015	413,400,000	200.75	82,990.05	70	58,093.035	100		0 100		
2016	422,500,000	200.75	84,816.875	70	59,371.8125	100	I .	0 100		
2017	432,648,000	164.25	71,062.434	80	56,849.9472	100	I .	0 100		
2018	441,726,000	164.25	72,553.4955	80	58,042.7964	100	I .	0 100		
2019	450,877,000	164.25	74,056.54725	80	59,245.2378	100		0 100		
2020	460,086,000	164.25	75,569.1255	80	60,455.3004	100		0 10		

Step E: MCF & OX

SWDS	parameter	IPCC default	User value
Managed	MCF	1	0.5 (or 0.4?)
anaerobic	OX	0	0
Managed well	MCF	0.5	0.5 (or 0.4?)
Semi-aerobic	OX	0	0
Unmanaged	MCF	0.4	0.5 (or 0.4?)
shallow	OX	0	0
Unmanaged	MCF	0.8	0.5 (or 0.4?)
deep	OX	0	0
I I w anto an wine a	MCF	0.6	0.5 (or 0.4?)
Uncategorised	OX	0	0

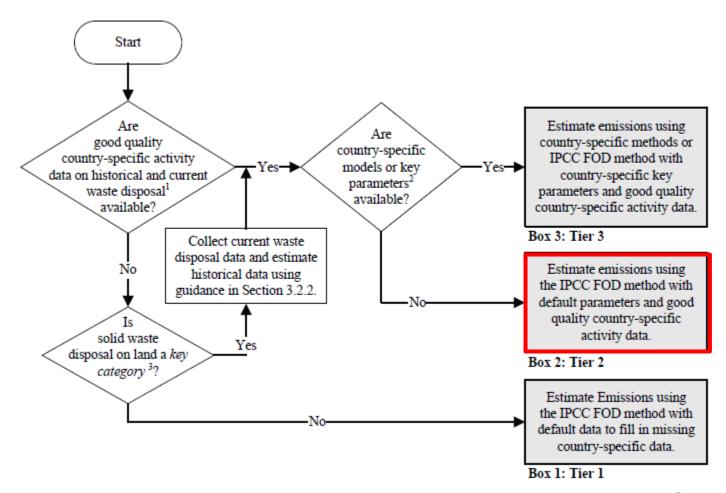
Steps F/G

Categories	CO2	CH4	N2O
4 - Waste	0.000	816.858	0.000
4.A - Solid Waste Disposal		816.858	
4.A.1 - Managed Waste Disposal Sites		0.000	
4.A.2 - Unmanaged Waste Disposal Sites		0.000	
4.A.3 - Uncategorised Waste Disposal Sites		816.858	

Categories	CO2	CH4	N2O
4 - Waste	0.000	1,061.915	0.000
4.A - Solid Waste Disposal		1,061.915	
4.A.1 - Managed Waste Disposal Sites		245.057	
4.A.2 - Unmanaged Waste Disposal Sites		694.329	
4.A.3 - Uncategorised Waste Disposal Sites		122.529	

From third NC3:

2019, 59,245 Gg of MSW reached landfills in India, resulting in 791 Gg of Methane


Type of emission factor and level of methodological tier employed for GHG estimation						
Gas	C) 2	CI	H ₄	N	N₂O
Sector/ Category	Method used	Emission Factor	Method used	Emission Factor	Method used	Emission Factor
E. Production of halocarbons	NO		NO		NO	
3. Agriculture	_			_		
A. Enteric fermentation	NO		T1, T2	D, CS	NO	
B. Manure management	NO		T1	D	T1	D
C. Rice cultivation	NO		T2	CS		
D. Agricultural soils	NO		NO		T2	CS
F. Field burning of agricultural residues	NO		T1	D	T1	D
4. Land Use, Land Use Change	and Forestry	(LULUCF)				
A. Forest land	T2	CS	T2	D, CS	T2	D, CS
B. Cropland	T2	CS	NO		NO	
C. Grassland	T2	CS	NO		NO	
D. Settlements	T2	CS	NO		NO	
E. Wetlands	NE		NE		NE	
F. Other Land	NA		NA		NA	
5. Waste						
A. Solid waste disposal on land	NO		T2	D, CS	NO	
B. Waste-water handling	NO		T1, T2	D, CS	T1, T2	D, CS
Memo item (not accounted in	total emissio	ns)				
International bunkers	T1, T2	D	T1, T2	D	T1, T2	D
CO ₂ from biomass	T1	D	NO		NO	
T1- Tier 1; T2- Tier 2; T3- Tier 3; CS- Co	untry Specific; D	- IPCC Default,	NO-Not Occur	ring, NA-Not A	Applicable, NE	-Not Estimated

Key Category & Tier

Figure 3.1 Decision Tree for CH₄ emissions from Solid Waste Disposal Sites

