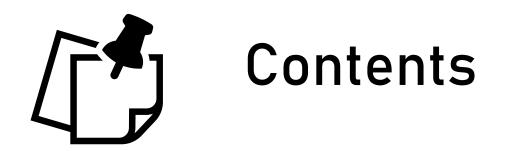


GHG Inventory Stationary combustion

Training on 2006 IPCC Guidelines for preparing National GHG Inventory:


Jaypalsinh Chauhan

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

- 1. Stationary combustion coverage in 2006 IPCC guideline
- 2. Analysis of 2006 IPCC Guidelines and 2019 Refinement
- 3. Stationary Combustion in GHGI, 2010
 - Data collection
 - Tier selection EF, Activity data
 - Emissions Philippines
- 4. Sample calculation

Outline of Energy Sector

1. Energy Sector: scope and importance

- 2. Fuel Combustion (stationary and mobile): CO2 emissions
- 3. Fuel Combustion: CH4 and N2O emissions

4. Methodological issues:

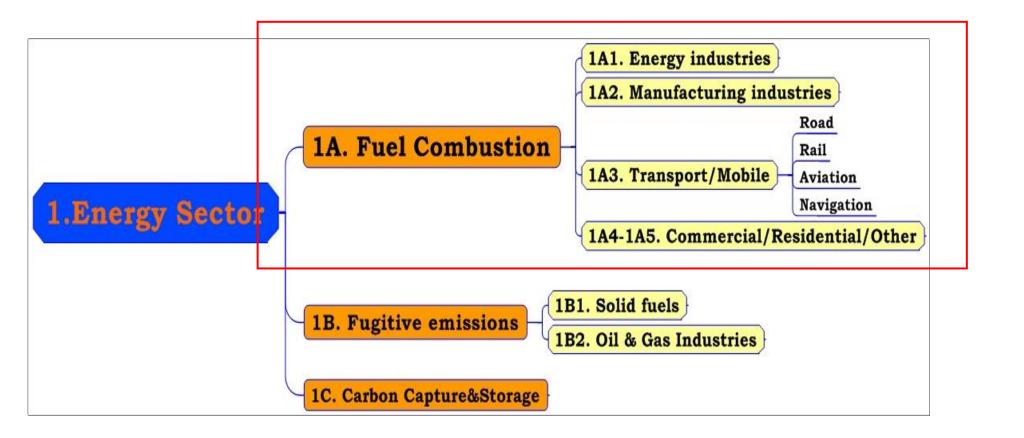
- 4.1 Biomass
- 4.2 Road Transport
- 4.3 International bunker
- 4.4 Waste as a fuel
- 4.5 Reference Approach
- 4.6 Excluded carbon

5. Fugitive Emissions

- 5.1 Coal mines
- 5.2 Oil and gas systems

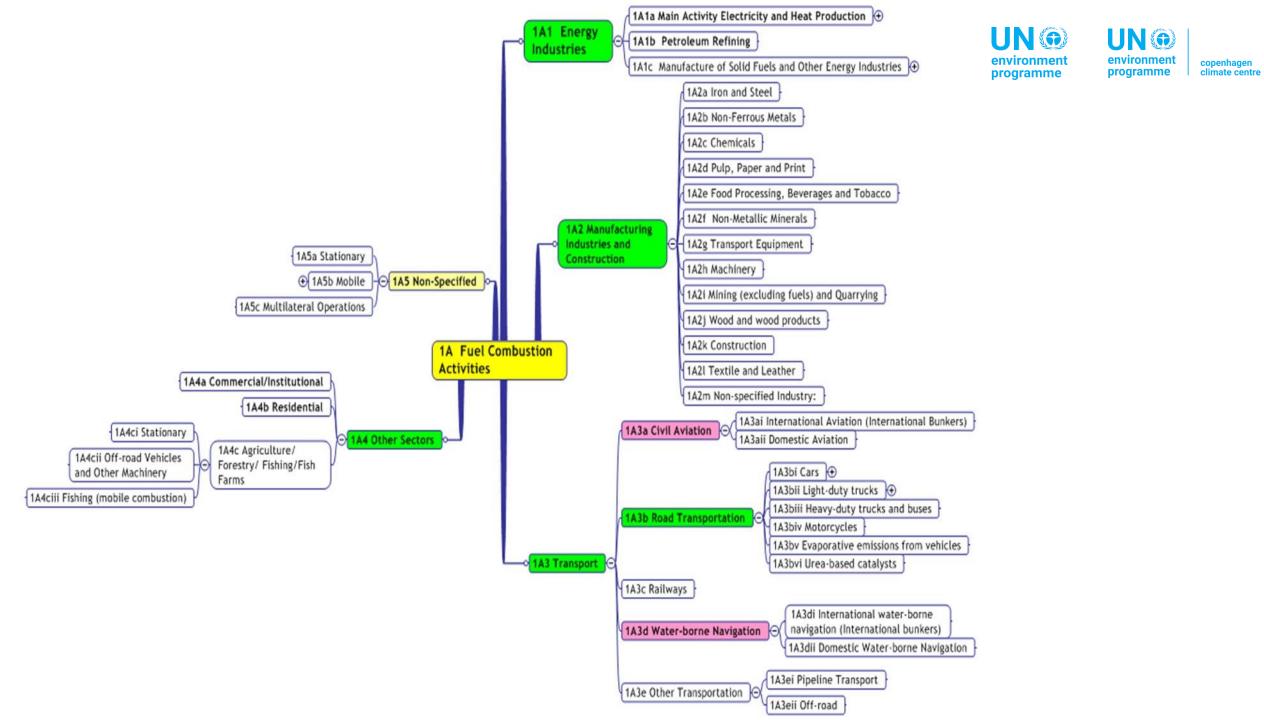
6. Carbon Dioxide Transport, Injection and Geological Storage

7. Summary


Energy Sector: Scope

- 1. Exploration and exploitation of primary energy sources
- 2. Conversion of primary energy sources into more useable energy forms in refineries and power plants
- 3. Transmission and distribution of fuels
- 4. Use of fuels in stationary and mobile applications

Energy Sector



Stationary combustion coverage in 2006 IPCC guideline OCCC

INTERGOVERNMENTAL PANEL ON Climate change

1A. Fuel Combustion

For inventory purposes, *fuel combustion* may be defined as the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus

- ✓ Not Energy Sector:
 - waste incineration without energy recovery \rightarrow Waste
 - use of fossil fuels as a feedstock in the Industrial Sector (e.g., coke in Iron&Steel) → IPPU
 - biomass fires/open burning \rightarrow AFOLU
- ✓ Coal mines fires, Gas flaring are in Fugitive Emissions

1A. Fuel Combustion. CO₂

- CO_2 emissions depend almost entirely on the carbon content of the fuel, though a small amount of carbon is un-oxidized (less than 1%).
- During the combustion process, most carbon is immediately emitted as CO2 regardless combustion technology
- By default *the 2006 IPCC Guidelines* assume a complete combustion process (100% carbon conversion or oxidation fraction is 1)

C + O2 = CO2 1 tonne C => 3.667 tonne CO2 (44/12)

Exercise 1: CO₂ emissions - ?

Anthracite (80-98% of Carbon, by mass):

- 1. "Hypothetical Anthracite": 100% of Carbon, 100% combustion
- 2. Anthracite: 85% of Carbon, 100% combustion
- 3. Anthracite: 85 % of Carbon, 99% combustion
- 4. Anthracite: 85% of Carbon, 95% combustion
- 5. Anthracite: 80% of Carbon, 99% combustion

CO2 emissions = Amount of Fuel * Emission Factor

EF = Carbon content * Oxidation fraction * 44/12

Anthracite - 1 tonne:

- 1. CO_2 emissions = 1 * 1* 1 * 44/12 = 3.667 tonne
- 2. CO₂ emissions = 1 * 0.85 * 1 * 44/12 = 3.117 tonne
- 3. CO_2 emissions = 1 * 0.85 * 0.99 * 44/12 = 3.086 tonne
- 4. CO_2 emissions = 1 * 0.85 * 0.95 * 44/12 = 2.961 tonne
- 5. CO_2 emissions = 1 * 0.80 * 0.99 * 44/12 = 2.904 tonne

1A. Fuel Combustion. Fuels

- **SOLID** (Coal and Coal Products)
 - including Coal, Coke and Derived Gases
- LIQUID (Crude Oil and Petroleum Products)
 - Including Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke
- GAS (Natural Gas)
- OTHER FOSSIL FUELS (Non-biomass municipal & Industrial wastes, waste oils)
- PEAT
 - treated as fossil fuel
- **BIOMASS** (Wood, Charcoal, Biofuels, Biomass fraction of MSW)
 - CO₂ emissions not included in total Energy emissions

✓ See definition of fuel types in Table 1.1, Volume 2, 2006 IPCC Guidelines

1A. Fuel Combustion. Units

The carbon content may vary considerably both among and within primary fuel types on a per mass or per volume basis. By converting to energy units this variability is reduced.

Fuel units:

- Volume: barrels (gallons), cubic feet, cubic meters, litres
- Mass: tonnes, kg
- Energy (expressed as either NCV or GCV): oil/coal-equivalent, calories, kW, MJ, BTU

The 2006 IPCC Guidelines - SI units :

- 1. Fuel Gg (TJ)
- 2. NCV TJ/Gg
- 3. Carbon content kg/GJ
- 4. $CO_2 EF kg/TJ$ (per energy basis)

environment programme

	NCV, TJ/Gg	Carbon Content, kg/GJ	Default CO ₂ EF, kg/TJ
Biomass (Wood)	15.6	30.5	112 000
Peat	9.76	28.9	106 000
Lignite	8.9	27.6	101 000
Anthracite	26.7	26.8	98 300
Coking Coal	28.2	25.8	94 600
Residual Fuel Oil	40.4	21.1	77 400
Diesel Oil	43	20.2	74 100
Motor Gasoline	44.3	18.9	69 300
Natural Gas	48	15.3	56 100

- Some statistical offices use gross calorific values (GCV)
- The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel:
 - for coal and oil, the NCV is about 5 % less than the GCV
 - for most natural and manufactured gas, the NCV is about 10 % less
- Where fuel characteristics (moisture, hydrogen and oxygen contents) are known, the 2006 IPCC Guidelines give a more precise method to convert GCV to NCV data:

NCV = GCV - 0.212H - 0.0245M - 0.008Y

M – Moisture, H – Hydrogen, Y – Oxygen, %

Exercise 2: CO₂ emissions - ?

- 1. Diesel burnt by:
 - Stationary source a diesel-generator
 - Mobile source a car

2. Amount of diesel burnt - 1 Giga-gram (or 1 201 923 litres, or 317 561 gallons)*

3. Assuming complete combustion

CO₂ emissions = Amount of Fuel * NCV * EF CO₂ emissions = 1 * 43 * 74 100 = 3 186 300 kg CO₂ = 3.19 Gg CO₂

Non-CO₂: CH₄ and N₂O

- Emission factors for non-CO₂ gases from fuel combustion are dependent on fuel and technology used (operating conditions, control technologies, quality of maintenance, age of equipment)
- Since the set of technologies, applied in each sector varies considerably, so do the emission factors
- Therefore it is not useful to provide default emission factors for these gases on the basis of fuels only

Non-CO₂: CH₄ and N₂O

environment programme climate centre

INDU	TABLE 2.7 STRIAL SOURCE EMISSION FACTO	DRS	
		Emission fa	actors ¹
		(kg/TJ energ	y input)
Basic technology	Configuration	CH4	N ₂ O
Liquid Fuels	•	•	
Residual Fuel Oil Boilers		3	0.3
Gas/Diesel Oil Boilers		0.2	0.4
Large Stationary Diesel Oil Engines >600hp (447 kW)		r 4	NA
Liquefied Petroleum Gases Boilers		n 0.9	n 4
Solid Fuels			1
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1	r 0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14	r 0.7
	Dry Bottom, wall fired	0.7	r 0.5
Other Bituminous/Sub-bituminous Pulverised	Dry Bottom, tangentially fired	0.7	r 1.4
	Wet Bottom	0.9	r 1.4
Other Bituminous Spreader Stokers		1	r 0.7
Other Bituminous/Sub-bit. Fluidised	Circulating Bed	1	r 61
Bed Combustor	Bubbling Bed	1	r 61
Natural Gas			_
Boilers		r 1	n 1
Gas-Fired Gas Turbines ² >3MW		4	1
Natural Gas-fired Reciprocating Engines ³	2-Stroke Lean Burn	r 693	NA
	4-Stroke Lean Burn	r 597	NA
	4-Stroke Rich Burn	r 110	NA
Biomass			
Wood/Wood Waste Boilers ⁴		n 11	n 7

Reference: UNFCCC CGE Training material

Non-CO₂: CH₄ and N₂O

ment copenhagen

TABLE 3.2.2 ROAD TRANSPORT N ₂ O AND CH ₄ DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES ^(a)										
Fuel Type/Representative Vehicle Category		CH4 (kg /TJ))	N2O (kg /TJ)						
	Default	Lower	Upper	Default	Lower	Upper				
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11				
Motor Gasoline –Oxidation Catalyst (c)	25	7.5	86	8.0	2.6	24				
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17				
Gas / Diesel Oil (e)	3.9	1.6	9.5	3.9	1.3	12				
Natural Gas ^(f)	92	50	1 540	3	1	77				
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na				
Ethanol, trucks, US ^(h)	260	77	880	41	13	123				
Ethanol, cars, Brazil ⁽ⁱ⁾	18	13	84	na	na	na				

<u>Tier 1</u>

Amount of fuel combusted, default NCV, carbon content, CO_2 EF (complete combustion)

Emissions = AD * EF

<u> Tier 2</u>

Amount of fuel, country-specific NCV, carbon content and CO_2 EF (oxidation rate), N₂O EF, CH₄ EF

<u> Tier 3</u>

Emissions depend on fuel type used, combustion technology, operating conditions, control technology, quality of maintenance, age of the equipment used to burn the fuel – plant-specific EFs (measurements)

Biomass

Biomass is a special case:

- CO₂ emissions from biomass combustion are not included in the national total. They are reported separately (*information item*)
- Non-CO₂ emissions are reported in the national total
- Net carbon emissions are accounted for in the LULUCF/AFOLU sector
- Peat is treated as a fossil fuel

Avoiding Double Counting Activity Data With Other Sectors as per IPCC 2006 guidelines

Fuel Combustion Sector:

- Use fuel combustion statistics instead of fuel delivery statistics.
- Be cautious about incomplete combustion data and potential double counting.
- Coordinate estimates between stationary source categories to avoid inaccuracies.

Industrial Processes and Product Use (IPPU) Sector:

- Account for emissions from synthesis gas production in IGCC under fuel combustion.
- Consider emissions from carbide production, especially when using carbon-rich fuels.

Metal Production (IPPU and AFOLU Sectors):

- Include emissions from the use of coal, coke, natural gas, and by-product fuels in metal production.
- Differentiate between fossil carbon materials and biogenic content for wood chips and charcoal.

Energy and Waste Sectors:

- Ensure consistency between stationary combustion and fugitive emissions accounting for methane from coal mine waste, landfill gas, and sewage gas.
- Report emissions from waste incineration with energy recovery in the Energy sector.

Waste Sector (Incineration):

- Distinguish between waste incineration with and without energy recovery.
- Assess and differentiate between fossil-carbon and biogenic content for accurate emissions reporting.

Waste Sector (Used Oils):

- Coordinate with those recovering used oils to assess the extent of burning.
- Estimate and report emissions in the Energy sector if used oils are used as fuel.

Summary

- Energy Sector = Fuel combustion (mobile and stationary) + Fugitive emissions + CCS
- Energy emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- CO_2 emission factor depends on carbon content of fuel, non- CO_2 on the technology used
- **Methodological issues** (biomass, international bunker, excluded carbon/fuels in other sectors)
- Reference approach is used for checking (CO₂)

2. Analysis of 2006 IPCC Guidelines and 2019 Refinement

INTERGOVERNMENTAL PANEL ON CLIMBTE Cha

□ According to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories no refinements has occurred in stationary combustion except treatment of biomass

2019 REFINEMENT

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES ON NATIONAL GREENHOUSE GAS INVENTORIES

Comparative Analysis of 2006 IPCC Guidelines and 2019 Refinement

Treatment of biomass

	2006 IPCC Guideline	2019 Refinement
CO ₂ Emissions from Biomass Fuels	Reported in AFOLU sector; not included in sectoral totals.	Reported as information items; not included in sectoral or national totals to avoid double counting. Default CO ₂ emission factors provided.
CH4 and N20 Emissions	Included in sectoral and national totals.	Included in sectoral and national totals, in addition to stock changes estimated in AFOLU sector.
Estimation for Energy Sector	Only that part combusted for energy estimated.	Only the part combusted for energy estimated for inclusion as an information item in the Energy sector.
Fuel Wood Activity Data	Data available from IEA or FAO.	Data available from IEA or FAO; compilers encouraged to contact national statistical agencies for better understanding.
Biofuels Combustion	Not mentioned	Biofuels combustion mentioned; recommended to establish split between fossil and non-fossil fractions for emission factor application.

How do we conduct GHG emission estimation for electricity generation using IPCC software?

1.A.1.a.i - Electricity Generation

This the work sheet for Electricity Generation

🏟 IPCC Inventory Software - chamara - [Worksheets]						-	o x
🖳 Application Database Inventory Year Workshee	ets Reports Tools Export/Impo	rt Administrate Window	Help				_ 8 ×
2006 IPCC Categories 🗸 📮	Fuel Consumption Data Fuel Combus	stion Emissions					
1 - Energy 1.A - Fuel Combustion Activities 1.A 1 - Energy Industries □ - 1.A 1.a - Main Activity Electricity and Heat Prod □ - 1.A 1.a i - Electricity Generation □ - 1.A 1.a.ii - Combined Heat and Power Gen	Worksheet Sector: Energy Category: Fuel Combustion Act Subcategory: 1.A.1.a.i - Electricity Sheet: Fuel Consumption D Data	tivities Generation					2010
- 1.A.1.a.iii - Heat Plants - 1.A.1.b - Petroleum Refining	Fuel Type (All fuels)	~					
			Equation 2.4				
1.A.2 - Manufacturing Industries and Construction 1.A.3 - Transport 1.A.4 - Other Sectors	Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)	
 	S AV	F ΔΥ	U 🗸	С	CF	TC = C * CF	
	* Total			6			
	Total					0	
Image: A - Waste Image: B - 5 - Other Image: Worksheet notes					Fuel Man	ager Time Se	eries data entry
	User notes		▼ ₽ 1.A.1.a	i - Time Series			▼ 7
Worksheet notes 2006 IPCC Guidelines	Save		Gas	CARBON DIOXIL			~

Country/Territory: Country X Inventory Year: 2010 Base year for assessment of uncertainty in trend: 1990 CO2 Equivalents: SAR GWPs (100 year time horizon) Database file:

Activities at worksheet

When compiling a greenhouse gas (GHG) inventory for the electricity sector using IPCC software, the process is divided into two main sections.

Subcategory: 1.A.1 Sheet: Fuel (Data	Combustion Activi a.i - Electricity Ge Consumption Data	ities eneration	J						20
Fuel Type Liquid Fue	ls	~							
				Equation 2	2.4				
Subdivision		Fuel		Consumption Unit		Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)	
S	ΔV	F	ΔV	U	∇	С	CF	TC = C * CF	
* Electricity Generat	on- Plant		~	Gg (Auto CF)	•) 🧭			
*						6			2
Total								0	
								, in the second s	

Activities at worksheet

• Fuel Consumption Data:

This part is all about gathering details on how much fuel is being used. We need precise records of the types and amounts of fuel used within the electricity sector.

Category: Fuel Combustion Subcategory: 1.A.1.a.i - Electric Sheet: Fuel Consumption Data Fuel Type Liquid Fuels		Equation 2.4				2	010
Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)		
S AV	F AV		_	CF	TC = C * CF		
Electricity Generation- Plant	~	Gg (Auto CF)	●) X
Total					0		

Activities at worksheet

• Fuel Combustion Data:

Fuel Combustion Data involves examining the emissions generated through the combustion process and accurately measuring and assessing their quantities.

Fuel Consump Worksheet Sector: Category: Subcategory Sheet: Data Fuel Type	Energ Fuel (y: 1.A.1 Fuel (y Combustion / .a.i - Electric Consumption	ity Generation		Equation 2						2	201	10
					Equation 2.	.4							
s	ubdivision		Fuel		Consumption Unit	(Consumption Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)				
		ΔV	F	ΔV	7 U	7	С	CF	TC = C * CF				
🔭 Electrici	ity Generati	on- Plant		V	Gg (Auto CF)	0	· 🧭					2	X
*							6						
Total													
									C				
								Fuel Mana	ager Tim	e Serie	s data (entry	·

CBIT-GSP

UN 💮

UN 💮

Entering Data in the Fuel Combustion Section

Let's walk through an example of how to input data

into the Fuel Consumption section

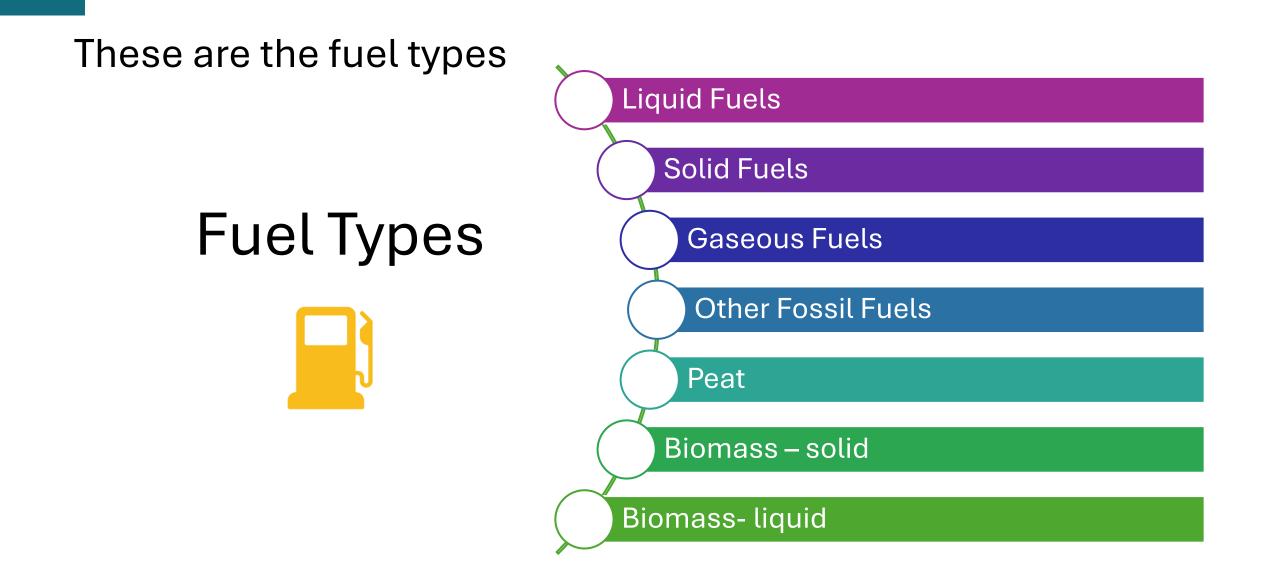
Item : Electricity generation - plant-01

Fuel Type : Crude Oil

Fuel consumption : 4500 TJ/year

Entering Data in the Fuel Combustion Section

environment programme


Frist select the "Fuel Type"

Fuel Consumpti	on Data	Fuel Combustion Emis	sions			
Worksheet						
Sector:	Energ	IV				
Category:	Fuel (Combustion Activities				
Subcategory:	1.A.1	.a.i - Electricity Generation				
Sheet:	Fuel (Consumption Data				
Data						
Fuel Type	All fuels)	~				
	All fuels)					
	iquid Fue					
	Solid Fuels					
	aseous F		Fuel			
	ther Fos	sil Fuels				
	eat	Ed				
	Biomass -		F AV			
	Biomass - Biomass -	•				
	Biomass -					

Other fuel types

Entering Data in the Fuel Consumption Section

Enter the name or code of your electricity generation plant under the 'Subdivision' column.

	Data Fuel Type	Liquid Fuels		~										
1	Equation 2.4													
	Subdivision Fuel				Consumption Consumption Unit (Mass, Volume or Energy Unit)		Conversion Factor (TJ/Unit) (GCV) (TJ)							
		S	$\Delta \nabla$	F	ΔV	U	∇	С	CF	TC = C * CF				
	* ectricity	generation plan	t-01 🗸			Gg (Auto CF)		θ 🧭			2		2	X
	*							6						
V	Total													
										0				

Entering Data in the Fuel Consumption Section

Next, choose "crude oil" from the dropdown menu in the Fuel column.

		Equa	tion 2.4	
Subdivision	Fuel	Consumption Ur	iit	Consumption (Mass, Volume or Energy Unit)
S AV	F AT	U	∇	С
Electricity generation plant	Crude Oil	Gg (Auto CF)		θ 🧭
* Total	Fuel Name	Calorific Value TJ / Gg)		n content (GCV) kg C / GJ)
	Aviation Gasoline	44.3		19.1
	Bitumen			22
	Crude Oil	42.3		20
	Ethane			16.8
	Gas/Diesel Oil			20.2
	Jet Gasoline	44.3		19.1
	Jet Kerosene	44.1		19.5
	Liquefied Petroleum Gases	47.3		17.2

Entering Data in the Fuel Consumption Section

environment programme

environment programme

Next, select "TJ" as the Consumption unit

Afterward, input the consumption quantity in the Consumption column

	Equation	12.4		
	Consumption Unit		Consumption (Mass, Volume or Energy Unit)	
	U	∇	С	
TJ			4500 🥑	
			6	

All right, those fields you see are the only ones available for input within the Fuel **Consumption section**

Towards the end, you've got some options in the last column:

- you can jot down any remarks •
- save your progress
- undo changes
- delete entries if needed.

Once done here, we'll move over to the Fuel Combustion Emission section.

Total consumption (TJ)			
TC = C * CF			
4500		2	X
4500			

Let's select for "Liquid fuels" as the fuel type

Data - F uel	Type Liquid Fuel	s	~	Uncertaintie	s for Liquid F	uels			
						Equation 2.4			
	Subdivis	ion		Fuel		Total consumption (TJ)	CO2 Emissions (Gg CO2)	CH4 Emissions (Gg CH4)	N2O Emiss (Gg N20
	S	Δ7		F	ΔV	TC	CO2	CH4	N2O
!	Electricity gener	ation plant-01	Crude Oil			4500	0	0	
T	otal								
·						4500	0	0	

IN O nvironment rogramme

Next, click on the small "+" icon.

uel	Туре	Liquid Fuels		~	Uncertainti	es for Liquid F	Fuels	
							Equation 2.4	
		Subdivision			Fuel		Total consumption (TJ)	CO2 Emissions (Gg CO2)
		S	ΔV		F	Δ7	тс	CO2
] 🕨	Elect	tricity generation	plant-01	Crude Oil			4500	
T	otal							
							4500	

Tier consideration using IPCC tool

Tier 1 Approach: Select IPC default emission factor in IPCC software

- **Tier 2 Approach**: Enter country specific emission factor values
- **Tier 3 Approach**: Enter technology specific emission factor values

factor in		Subcategory: 1A1ai-B	ation Activities lectricity Generation stion Emissions	for Liquid Fuels				2010
		Subdivisi	ion	Equation 2.4 Fuel Total consumption (TJ)		CO2 Emissions (Gg CO2)	N2O Emissions (Gg N20)	
		S Electricity generation		F 47	TC 4500	CO2	CH4 Emissions (Gg CH4) CH4	N2O
sion factor		Type of Technolo	Technology Technology	Son CO2 Emission Factor (kg CO2/TJ)	CO2 Amount Captured (Gg CO2)	CH4 CH4 Emission Factor (kg CH4/TJ) (Gg CH4)	N2O N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N2O)
		T plant-01	P Catoria	4500 CF(CO2)	z 002-C*EF (C02)/10%6-Z	EF(CH4) CH4-C*EF (CH4)/10*6	EF(N2O)	N2O+C*EF (N2O)/10%
nission		- coal			er limit Upper limit Unit 71100 75500 kg/TJ	Parameter	Description	
		Total			4500	0		0 0
		Total			4500	0		0] 0]
	CO2	Total		CH4	4500	0	N20	
CO2 Emission Factor (kg CO2/TJ)	CO2 Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emiss Factor (kg CH4/1	sion C	450) H4 Emissions (Gg CH4)	N2O Em Fac (kg N2	ission tor	N2O Emission (Gg N20)
	Amount Captured	CO2 Emissions	Factor	sion C TJ)	H4 Emissions	Fac	lission tor O/TJ)	N2O Emission
Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2) CO2=C*EF	Factor (kg CH4/1	sion C TJ)	H4 Emissions (Gg CH4) CH4=C*EF	Fac (kg N2	lission tor O/TJ)	N2O Emission (Gg N20) N2O+C*EF
Factor (kg CO2/TJ) EF(CO2)	Amount Captured (Gg CO2) Z	CO2 Emissions (Gg CO2) CO2-C*EF (CO2)/10*6-Z	Factor (kg CH4/1 EF(CH4	sion C TJ)	H4 Emissions (Gg CH4) CH4=C*EF	Fac (kg N2	lission tor O/TJ)	N2O Emission (Gg N20) N2O+C*EF (N2O)/10*6

CBIT-GSP CLIMATE TRANSPARENCY UN 🏟

UN 💮

If you have specific values for each column, you can input them. Otherwise, you can select the default values and finally, click the "Save" button.

Tier 1 approach is used in this example

sheet	-							20
jory:	Energy Fuel Combustion Act	tivities						20
ategory:	1.A.1.a.i - Electricity							
t:	Fuel Combustion Em							
Type Li	iquid Fuels	∼ Uno	certainties for Liquid Fuels					
					Equation 2.4			
	Subdivision		Fuel		Total consumption	CO2 Emissions	CH4 Emissions	N2O Emissions
	Subdivision		Fuel		(TJ)	(Gg CO2)	(Gg CH4)	(Gg N20)
		۵V		ΔV	TC	CO2	CH4	N2O
Electric	city generation plant-0	01 Crude Oil			4500	0	0	
otal								
					4500	0	0	
					4500	0	0	
					4500	0	0	
					4500	0	0	
					4500	0	0	
					4500	0	0	
					4500	0	0	

This is how the first entry looks once you're done. You'll follow the same steps to add new entries under electricity generation.

	onsumption Data Fuel Combustion Emiss	ions					
Shee Data	pr: Energy pory: Fuel Combustion Activities ategory: 1.A.1.a.i - Electricity Generation t: Fuel Combustion Emissions						2010
Fuel	Type Liquid Fuels ~	Uncertainties for Liquid Fuels		5			
				Equation 2.4			
	Subdivision	Fuel		Total consumption (TJ)	CO2 Emissions (Gg CO2)	CH4 Emissions (Gg CH4)	N2O Emissions (Gg N20)
	S AV	F	۵V	тс	CO2	CH4	N2O
ب	Electricity generation plant-01	Crude Oil		4500	329.85	0.0135	0.0027
T	otal						
				4500	329.85	0.0135	0.0027

1.A.1.a.i - Electricity Generation

Step 01: Open the Worksheet 1: Fuel Consumption Data.

Step 02: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Gas –fired Plant–01	
Fuel Type	Gaseous Fuels	
Fuel	Natural Gas(Dry)	
Consumption	10,000	User defined
Consumption Unit	Gg (Auto CF)	Selection

Step 03: Save entered data

1.A.1.a.i - Electricity Generation

Step 04: Open the Worksheet 2: Fuel Combustion Emissions

Step 05: Enter following data accordingly

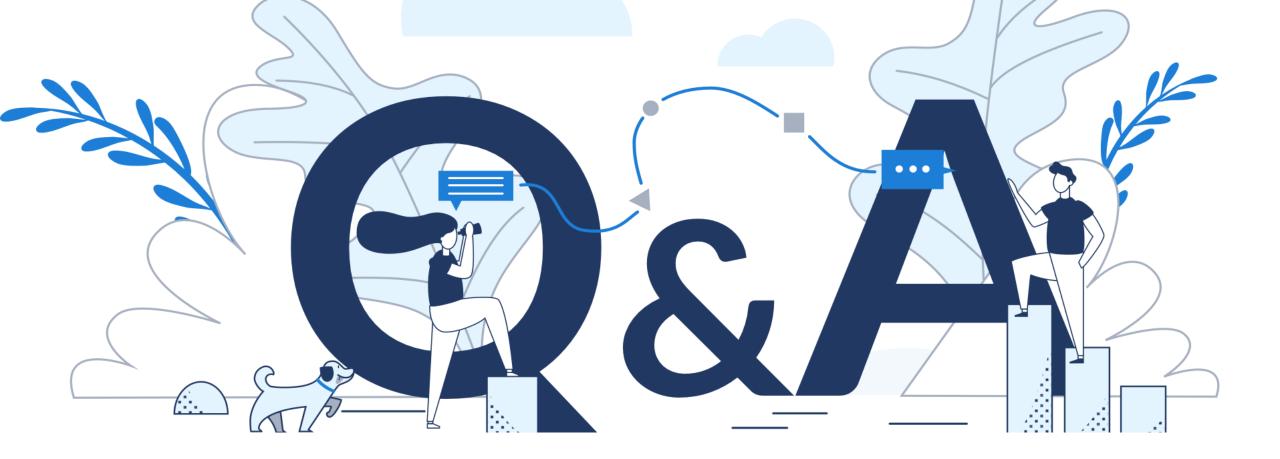
Input parameter	Entry	Note
Type of Technology	Gas –fired Plant-01	
Technology penetration	100%	
CO ₂ Emission factor	56100 kgCO ₂ /TJ	Default
Amount Captured	0	
CH ₄ Emission factor	1 kgCH ₄ /TJ	Default
N ₂ 0 Emission factor	0.1 kgN ₂ 0/TJ	Default

Step 06: Save entered data

Exercise-01 Cont.

Fuel Consumption data

Data Fuel Type Gaseous Fuels	~							
		Equation 2.4						
Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)			
s av	F AV	U V	С	CF	TC = C * CF			
Gas -fired Plant-01	Natural Gas (Dry)	Gg (Auto CF)	10000	48	480000		2	X
*						2		
Total								
					480000		 	


Exercise-01 Cont.

Fuel Combustion data

					Equ	Equation 2.4							
	Subdivision		Fuel			Total consumption (TJ)		ons	CH4 Emissions (Gg CH4)	N2O Emission (Gg N20)			
	S	ΔV	F	Δγ	Τ	rc	CO2		CH4		N2O		
Þ	Gas -fired Plant-01	Natu	ral Gas (Dry)			480000		26928	0.4	48		0.0	
	Technology				CO2		CH4	4	N2O				
	Type of Technology	Technology penetration (%)		CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)			
	т	Р	C=TC* (P/100)	EF(CO2)	z	CO2=C*EF (CO2)/10^6- Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6			
-	Gas-Fired Plant-1	100	480000	56100	0	26928	1	0.48	0.1	0.048	2		
	*										2		
	Total		(00000			20022		0.40		0.040			
L			480000			26928		0.48		0.048			

