

iment env

nt copenhagen

Training on 2006 IPCC Guidelines for preparing National GHG Inventory:

Jaypalsinh Chauhan

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

environme

nt copenhagen

Content

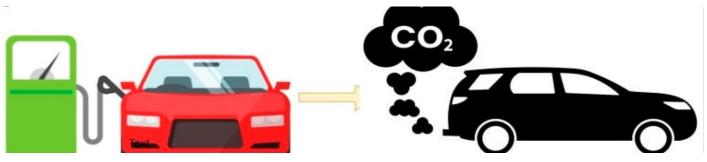
Introduction

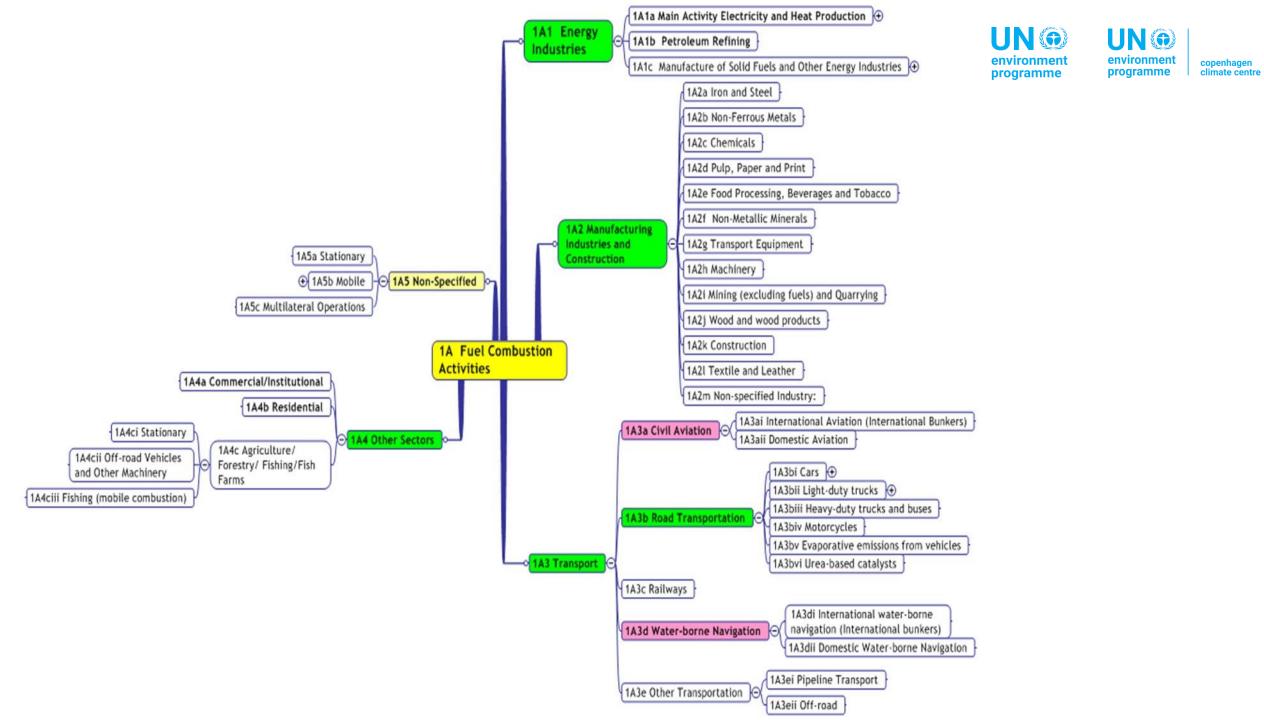
Road transportation coverage in 2006 IPCC guideline

Road transportation in Philippine GHGI, 2010

Calculation examples and exercises – Manually & using IPCC inventory tool




Introduction



Energy Sector

1A. Fuel Combustion: CO₂

- CO₂ emissions depend almost entirely on the carbon content of the fuel, though a small amount of carbon is un-oxidized (less than 1%).
- During the combustion process, most carbon is immediately emitted as CO2 regardless combustion technology
- By default *the 2006 IPCC Guidelines* assume a complete combustion process (100% carbon conversion or oxidation fraction is 1)

C + O2 = CO2 1 tonne C => 3.667 tonne CO2 (44/12)

1A. Fuel Combustion: Fuels

- **SOLID** (Coal and Coal Products)
 - including Coal, Coke and Derived Gases
- LIQUID (Crude Oil and Petroleum Products)
 - Including Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke
- GAS (Natural Gas)
- **OTHER FOSSIL FUELS** (Non-biomass municipal & Industrial wastes, waste oils)
- PEAT
 - treated as fossil fuel
- **BIOMASS** (Wood, Charcoal, Biofuels, Biomass fraction of MSW)
 - CO₂ emissions not included in total Energy emissions

✓ See definition of fuel types in Table 1.1, Volume 2, 2006 IPCC Guidelines

1A. Fuel Combustion: Units

The carbon content may vary considerably both among and within primary fuel types on a per mass or per volume basis. By converting to energy units this variability is reduced.

Fuel units:

- Volume: barrels (gallons), cubic feet, cubic meters, litres
- Mass: tonnes, kg
- Energy (expressed as either NCV or GCV): oil/coal-equivalent, calories, kW, MJ, BTU

The 2006 IPCC Guidelines - SI units :

- 1. Fuel Gg (TJ)
- 2. NCV TJ/Gg
- 3. Carbon content kg/GJ
- 4. $CO_2 EF kg/TJ$ (per energy basis)

Reference: UNFCCC CGE Training material

IPCC Energy Units

	NCV, TJ/Gg	Carbon Content, kg/GJ	Default CO ₂ EF, kg/TJ
Biomass (Wood)	15.6	30.5	112 000
Peat	9.76	28.9	106 000
Lignite	8.9	27.6	101 000
Anthracite	26.7	26.8	98 300
Coking Coal	28.2	25.8	94 600
Residual Fuel Oil	40.4	21.1	77 400
Diesel Oil	43	20.2	74 100
Motor Gasoline	44.3	18.9	69 300
Natural Gas	48	15.3	56 100

NCV vs. GCV

- Some statistical offices use gross calorific values (GCV)
- The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel:
 - for coal and oil, the NCV is about 5 % less than the GCV
 - for most natural and manufactured gas, the NCV is about 10 % less
- Where fuel characteristics (moisture, hydrogen and oxygen contents) are known, the 2006 IPCC Guidelines give a more precise method to convert GCV to NCV data:

NCV = GCV - 0.212H - 0.0245M - 0.008Y

M – Moisture, H – Hydrogen, Y – Oxygen, %

Exercise 2: CO₂ emissions - ?

- 1. Diesel burnt by:
 - Stationary source a diesel-generator
 - Mobile source a car

2. Amount of diesel burnt - 1 Giga-gram (or 1 201 923 litres, or 317 561 gallons)*

3. Assuming complete combustion

CO₂ emissions = Amount of Fuel * NCV * EF CO₂ emissions = 1 * 43 * 74 100 = 3 186 300 kg CO₂ = 3.19 Gg CO₂

Non-CO₂: CH₄ and N₂O

- Emission factors for non-CO₂ gases from fuel combustion are dependent on fuel and technology used (operating conditions, control technologies, quality of maintenance, age of equipment)
- Since the set of technologies, applied in each sector varies considerably, so do the emission factors
- Therefore it is not useful to provide default emission factors for these gases on the basis of fuels only

Non-CO₂: CH₄ and N₂O

environment programme cimate centre

INDUS	TABLE 2.7 STRIAL SOURCE EMISSION FACTO	DRS		
		Emission factors ¹ (kg/TJ energy input)		
Basic technology	Configuration	CH4	N ₂ O	
Liquid Fuels		·		
Residual Fuel Oil Boilers		3	0.3	
Gas/Diesel Oil Boilers		0.2	0.4	
Large Stationary Diesel Oil Engines >600hp (447 kW)		r 4	NA	
Liquefied Petroleum Gases Boilers		n 0.9	n 4	
Solid Fuels			1	
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1	r 0.7	
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14	r 0.7	
	Dry Bottom, wall fired	0.7	r 0.5	
Other Bituminous/Sub-bituminous Pulverised	Dry Bottom, tangentially fired	0.7	r 1.4	
	Wet Bottom	0.9	r 1.4	
Other Bituminous Spreader Stokers		1	r 0.7	
Other Bituminous/Sub-bit. Fluidised	Circulating Bed	1	r 61	
Bed Combustor	Bubbling Bed	1	r 61	
Natural Gas		1		
Boilers		r 1	n 1	
Gas-Fired Gas Turbines $^2 > 3 MW$		4	1	
Natural Gas-fired Reciprocating Engines ³	2-Stroke Lean Burn	r 693	NA	
	4-Stroke Lean Burn	r 597	NA	
	4-Stroke Rich Burn	r 110	NA	
Biomass	•			
Wood/Wood Waste Boilers ⁴		n 11	n 7	

Reference: UNFCCC CGE Training material

Non-CO₂: CH₄ and N₂O

TABLE 3.2.2 ROAD TRANSPORT N ₂ O AND CH ₄ DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES ^(a)							
Fuel Type/Representative Vehicle Category		CH4 (kg/TJ)			N2O (kg /TJ)		
	Default	Lower	Upper	Default	Lower	Upper	
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11	
Motor Gasoline –Oxidation Catalyst ^(c)	25	7.5	86	8.0	2.6	24	
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17	
Gas / Diesel Oil (e)	3.9	1.6	9.5	3.9	1.3	12	
Natural Gas ^(f)	92	50	1 540	3	1	77	
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na	
Ethanol, trucks, US ^(h)	260	77	880	41	13	123	
Ethanol, cars, Brazil ⁽ⁱ⁾	18	13	84	na	na	na	

Combustion Emissions – Higher Tiers

<u>Tier 1</u>

Amount of fuel combusted, default NCV, carbon content, CO₂ EF (complete combustion)

Emissions = AD * EF

<u>Tier 2</u>

Amount of fuel, country-specific NCV, carbon content and CO₂ EF (oxidation rate), N₂O EF, CH₄ EF

<u>Tier 3</u>

Emissions depend on fuel type used, combustion technology, operating conditions, control technology, quality of maintenance, age of the equipment used to burn the fuel – plant-specific EFs (measurements)

Reference: UNFCCC CGE Training material

Road Transport

- All fuel sold in a country is included in national estimates even if a vehicle crosses a border or fuel exported in fuel tanks of vehicles
- Bio-fuels carbon removed from total and reported separately
- Carbon is also emitted from urea based catalysts and included here (not strictly combustion)
- **CH**₄ and N₂O strongly technology related. At higher tiers need to know technologies in fleet (especially type and proportion of catalysts)
- Caution with "fuel sold" data:
 - overlaps with off-road and potentially other sectors (e.g. agriculture)
 - blended fuels (e.g. bio-ethanol) and lubricants
 - smuggling

Reference: UNFCCC CGE Training material

International bunker

Aviation and Shipping (water-borne navigation):

- Domestic emissions included in National Total
- International emissions reported separately as *"Bunker Fuels"*
- Domestic trips are journeys between points in one country
- International trips between countries

Waste as a Fuel

- Some waste incinerators also produce heat or power
- In such cases the waste stream will show up in national energy statistics and it is good practice to report these emissions under the energy sector
- This could lead to double counting when in the waste sector the total volume of waste is used to estimate emissions
- Only the fossil fuel derived fraction of CO₂ from waste is included in national total emissions

Reference Approach is a top-down approach, using a country's energy supply data to calculate the emissions of CO_2 from fuel combustion:

CO2 emissions = (Apparent Consumption - Excluded Carbon) * EF Apparent consumption = Production + Import - Export - International bunker - Stock change

- \checkmark CO₂ only
- ✓ used as a check for Sectoral Approach

Excluded Carbon / Non-Energy Use of Fuescillate transparency

UN 💮

environment programme UN 🎯

environment

programme

copenhagen climate centre

Type of use	Example of fuel types	Product/process	Chapter
Feedstock	natural gas, oils, coal	ammonia	3.2
	naphtha, natural gas, ethane, propane, butane, gas oil, fuel oils	methanol, olefins (ethylene, propylene), carbon black	3.9
Reductant	petroleum coke	carbides	3.6
	coal, petroleum coke	titanium dioxide	3.7
	metallurgical cokes, pulverised coal, natural gas	iron and steel (primary)	4.2
	metallurgical cokes	ferroalloys	4.3
	petroleum coke, pitch (anodes)	aluminium ¹	4.4
	metallurgical coke, coal	lead	4.6
	metallurgical coke, coal	zinc	4.7
Non-energy	lubricants	lubricating properties	5.2
product	paraffin waxes	misc. (e.g., candles, coating)	5.3
	bitumen (asphalt)	road paving and roofing	5.4
	white spirit ² , some aromatics	as solvent (paint, dry cleaning)	5.5

Summary

- Energy Sector = Fuel combustion (mobile and stationary) + Fugitive emissions + CCS
- Energy emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- CO₂ emission factor depends on carbon content of fuel, non-CO₂ on the technology used
- **Methodological issues** (biomass, international bunker, excluded carbon/fuels in other sectors)
- **Reference approach is used for checking** (CO₂)

□ Sources of mobile combustion in Philippines

• Road transportation

Examples

- Jeepneys Diesel
- Tricycles Diesel/ kerosene
- Buses
- Water transportation
- Civil aviation
- Railways

environment programme

Road transportation coverage in 2006 IPCC guideline

INTERGOVERNMENTAL PANEL ON Climate change

According to the 2019
 Refinement to the 2006 IPCC
 Guidelines for National
 Greenhouse Gas Inventories, no
 refinements has occurred in
 mobile combustion

2019 REFINEMENT

INTERGOVERNMENTAL PANEL ON CLIMATE Ch

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES ON NATIONAL GREENHOUSE GAS INVENTORIES

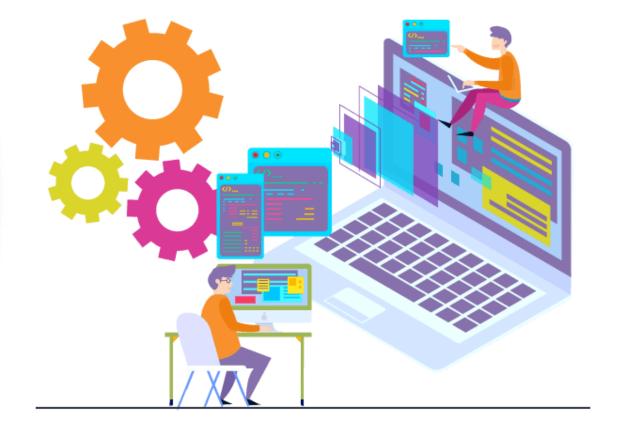
Emission source coverage for road transportation

All combustion and evaporative emissions arising from fuels used in road vehicles, including the use of agricultural vehicles on paved roads

According to the 2006 IPCC Guidelines it may include emissions from,

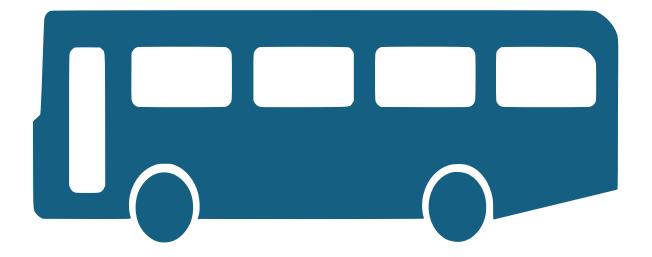
- Cars
 - Automobiles use for transport of persons having capacity of 12 persons or fewer
- Light-duty trucks
 - Emissions from vehicles do transportation of light-weight cargo or which are equipped with special features such as four-wheel drive for off-road operation.
 - Gross vehicle weight ranges up to 3500-3900 kg or less

- Heavy-duty trucks and buses
 - Gross vehicle weight ranges from 3500-3900 kg or more for heavy duty trucks
 - Buses are rated to carry more than 12 persons
- Motorcycles


- Emissions from any motor vehicle designated to travel not more than 3 wheels in contact with the ground
- Weight < 680 kg
- Evaporate emissions from vehicles
 - Evaporative emissions from vehicles
 - Exclude emissions from loading fuel into vehicles
- Urea-based catalysts
 - CO₂ emissions from use of urea-based additives in catalytic converters (noncombustive emissions)

environment

t copenhagen


Calculation examples and exercises -Manually & using **IPCC** inventory tool

environment

UN 🎯 environment copenhagen climate centre programme

ROAD **TRANSPORTATION**

environment programme climate centre

	Tier 1 approach to calculate CO ₂ emissions	
	Emission = $\sum_{a} [fuel_{a} * EF_{a}]$	
Parameter	Description	Unit
Emission	Emissions of CO ₂	kg
fuel _a	Fuel sold	ТЈ
EF _a	Emission factor . This is equal to the carbon content of the fuel multiplied by 44/12.	kg/TJ
а	Fuel type	N/A
	<u>`</u>	

Tier 1 approach use default, fuel based CO₂ emission factor

Default EF values for Tier 1 calculations are available in IPCC guideline >> Volume 2 >> Chapter 3

UN 🛞 programme programme

climate centr

Calculation example to find CO₂ emissions from road vehicles in Philippines 2010, using tier 1 approach

Fuel type	Consumption (ktoe)	2006, IPCC default CO ₂ emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)
PremGas	2,150.05	69,300	41.87
RegGas	599.47	69,300	41.87
Diesel	4,083.94	74,100	41.87
LPG	0.01	63,100	41.87

conversion factor is used in here because activity data is present in ktoe 🛛 🧖 (kilo tonne of oil equivalents)

Fuel type	Emission = [fuel consumption * EF]
PremGas	Fuel consumption = 2,150.05 ktoe* 41.87 TJ/ktoe = 90,022.5935 TJ
	E_{CO2} =90,022.5935 TJ *69,300 kg/TJ = 6,238,565,730 kg or 6,238.57 Gg
RegGas	1,739,416,757 kg
Diesel	12,670,697,470 kg
LPG	26,419.97 kg

Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

2006. IP	CC default EF			
	ROAD TRANSPORT DEFAULT	LE 3.2.1 I CO ₂ EMISSION NTY RANGES ^a	N FACTORS AN	ND
	Fuel Type	Default (kg/TJ)	Lower	Upper
	Motor Gasoline	69 300	67 500	73 000
	Gas/ Diesel Oil	74 100	72 600	74 800
	Liquefied Petroleum Gases	63 100	61 600	65 600
	Kerosene	71 900	70 800	73 700
	Lubricants ^b	73 300	71 900	75 200
	Compressed Natural Gas	56 100	54 300	58 300
	Liquefied Natural Gas	56 100	54 300	58 300

This result is correct only if any CO₂ is not recovered!

If CO_2 has captured, it should subtract from

the total CO₂ emissions

Tier 1 approach to calculate CH ₄ and N ₂ O emissions				
	Emission = $\sum_{a} [fuel_{a} * EF_{a}]$			
Parameter	Description	Unit		
Emission	Emissions of CO ₂	kg		
fuel _a	Fuel sold	ТЈ		
EF _a	Emission factor	kg/TJ		
а	Fuel type (e.g., diesel, gasoline, natural gas, LPG)	N/A		

Tier 1 approach use default, fuel based CH₄ and N₂O emission factors

$\langle \rangle$	CBIT-GSP	
	CLIMATE TRANSPARENCY	

UN 🏵 UN 🌀 environment programme environment programme

copenhagen climate centre

Calculation example to find CH ₄ emissions from road vehicles in Philippine					
Fuel type	Consumption (ktoe)	2006, IPCC default CH ₄ emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)	2006	
PremGas	2,150.05	33 (uncontrolled)	41.87		
RegGas	599.47	33 (uncontrolled)	41.87	Fuel Typ	
Diesel	4,083.94	3.9	41.87	Motor G	
LPG	0.01	62	41.87	Motor G Vintage Gas / Die	
				Natural O	

*a conversion fac

(kilo tonne of oil

Natural Gas ^(f)			92	50	1 540
n factor is used in here because activity data was present in ktoe		Liquified petroleum gas ^(g)	62	na	na
		Ethanol, trucks, US (a)	260	77	880
of oil equivalent	SJ	Ethanol, cars, Brazil ⁽ⁱ⁾	18	13	84
Fuel type	Emission = [fuel a * EF a]				
PremGas	Fuel consumption = 2,150.05 ktoe * 41.87 TJ/ktoe = 90,022.5935 TJ				
E_{CH4} = 90,022.5935 TJ * 33 kg/TJ = 2,970,745.586 kg or 2.98 Gg					
RegGas	RegGas 828293.6937 kg				
Diesel	Diesel 666878.8144 kg				
LPG 25.9594 kg					

Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

2	006, IPCC default EF							
	TABLE 3.2.2 ROAD TRANSPORT N ₂ O AND CH ₄ DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES $^{(a)}$							
	Fuel Type/Representative Vehicle Category	CH4 (kg /TJ)			N ₂ O (kg /TJ)			
		Default	Lower	Upper	Default	Lower	Upper	
	Motor Gasoline -Uncontrolled ^(b)	33	9.6	110	3.2	0.96	11	
	Motor Gasoline –Oxidation Catalyst ^(c)	25	7.5	86	8.0	2.6	24	
	Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17	
	Gas / Diesel Oil ^(e)	3.9	1.6	9.5	3.9	1.3	12	
	Natural Gas ^(f)	92	50	1 540	3	1	77	
	Liquified petroleum gas ^(g)	62	na	na	0.2	na	na	
- 11	Ethanol, trucks, US (h)	260	77	880	41	13	123	

gei 2010, using tier 1 approach בוי וח

t copenhagen

Calculation example to find N₂O emissions from road vehicles in Philippines 2010, using tier 1 approach

Fuel type	Consumption (ktoe)	2006 IPCC default N ₂ O emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)	Emission = [fuel consumption * EF]
PremGas	2,150.05	3.2	41.87	Fuel consumption = 2,150.05 ktoe * 41.87 TJ/ktoe
				= 90,022.5935 TJ
				E_{N20} = 90,022.5935 TJ * 3.2 kg/TJ = 288,072.2992
				kg or 0.29 Gg
RegGas	599.47	3.2	41.87	80319.38848 kg
Diesel	4,083.94	3.9	41.87	666878.8144 kg
LPG	0.01	0.2	41.87	0.08374 kg

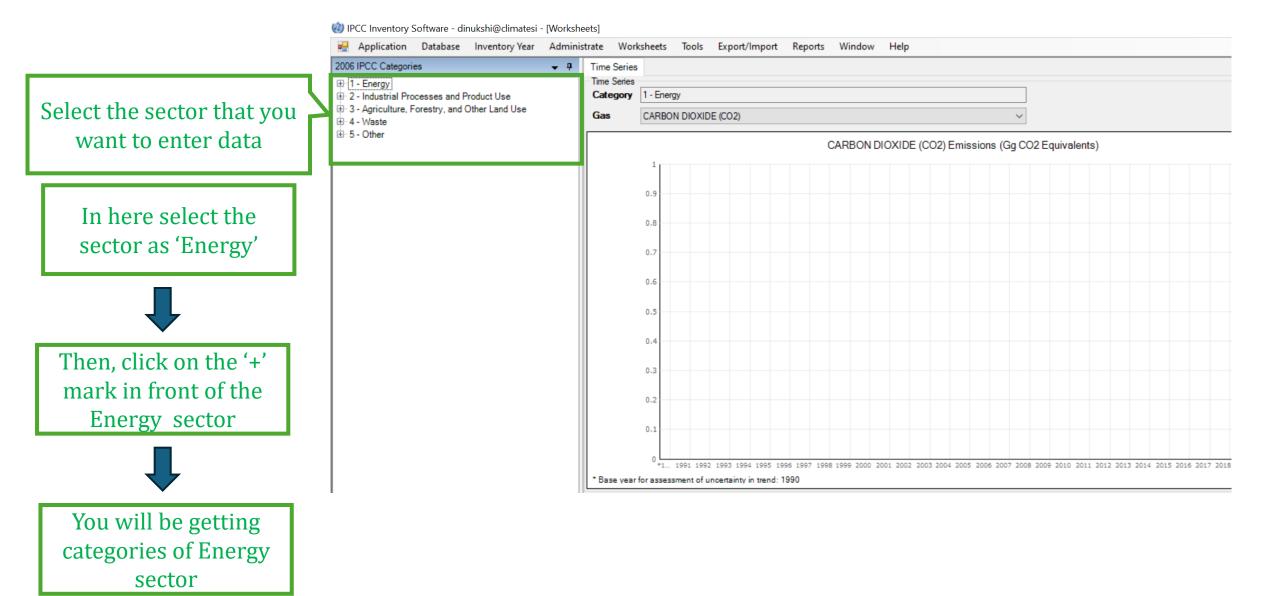
TABLE 3.2.2 ROAD TRANSPORT N2O AND CH4 DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES ^(a)									
Fuel Type/Representative Vehicle Category		CH4 (kg /TJ)			N ₂ O (kg /TJ)				
	Default	Lower	Upper	Default	Lower	Upper			
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11			
Motor Gasoline –Oxidation Catalyst ^(c)	25	7.5	86	8.0	2.6	24			
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17			
Gas / Diesel Oil ^(e)	3.9	1.6	9.5	3.9	1.3	12			
Natural Gas ^(f)	92	50	1 540	3	1	77			
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na			
Ethanol, trucks, US ^(h)		77	880	41	13	123			
Ethanol, cars, Brazil ⁽ⁱ⁾	18	13	84	na	na	na			

*a conversion factor is used in here because activity data

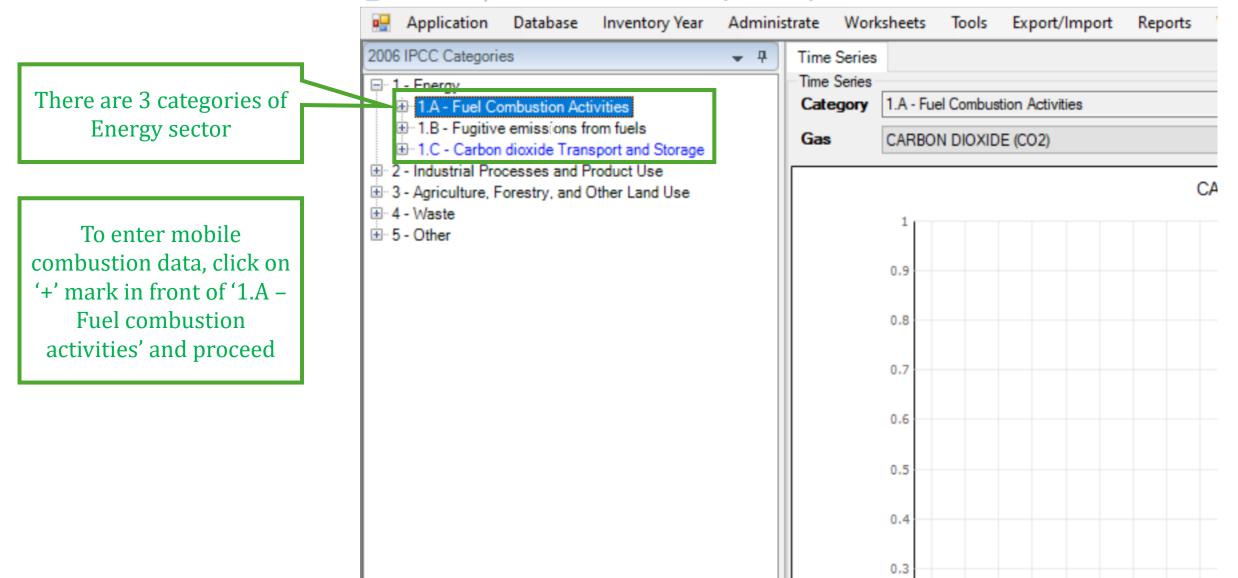
was present in ktoe (kilo tonne of oil equivalents)

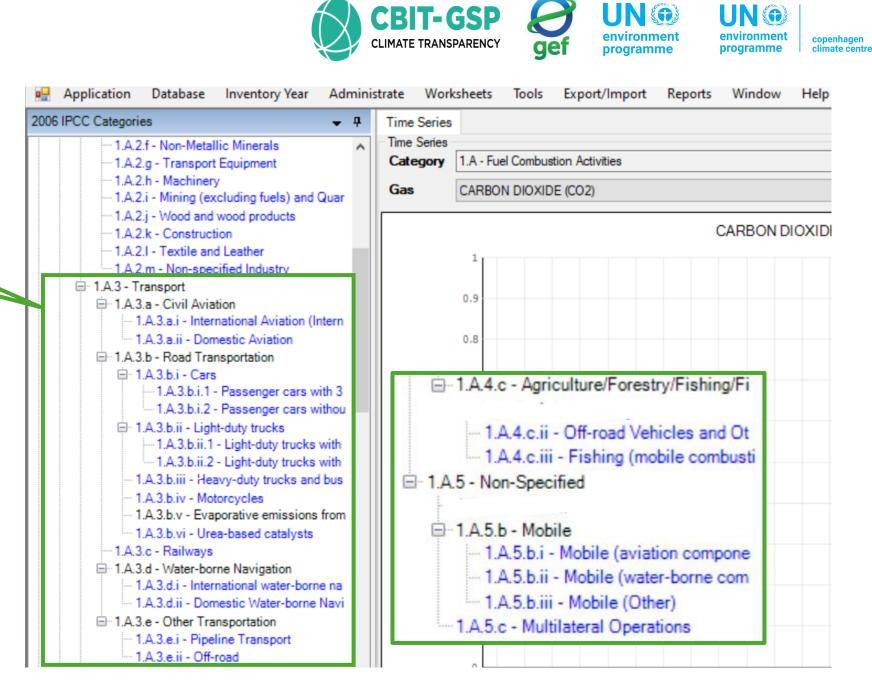
Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

Let's start working with the software



Dive into the Inventory tool together and explore its features firsthand


Open the software and go to worksheets!



IPCC Inventory Software - dinukshi@climatesi - [Worksheets]

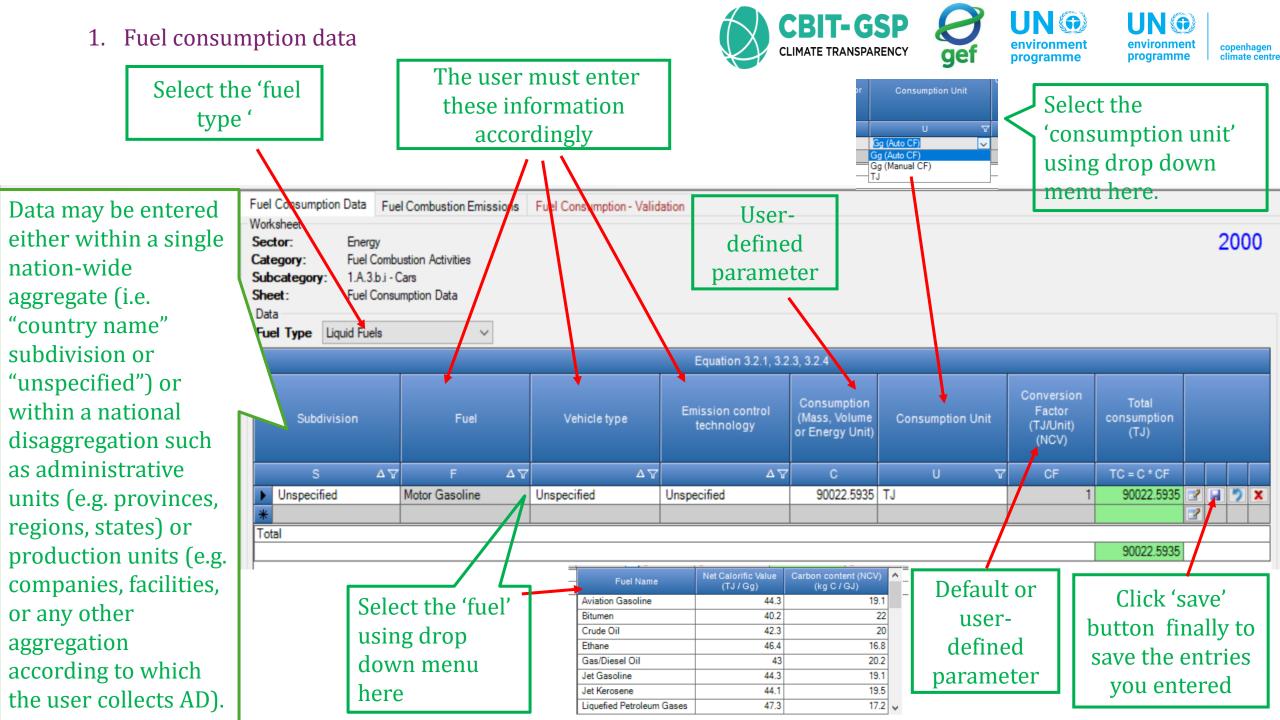
Mobile combustion related categories and sub-categories

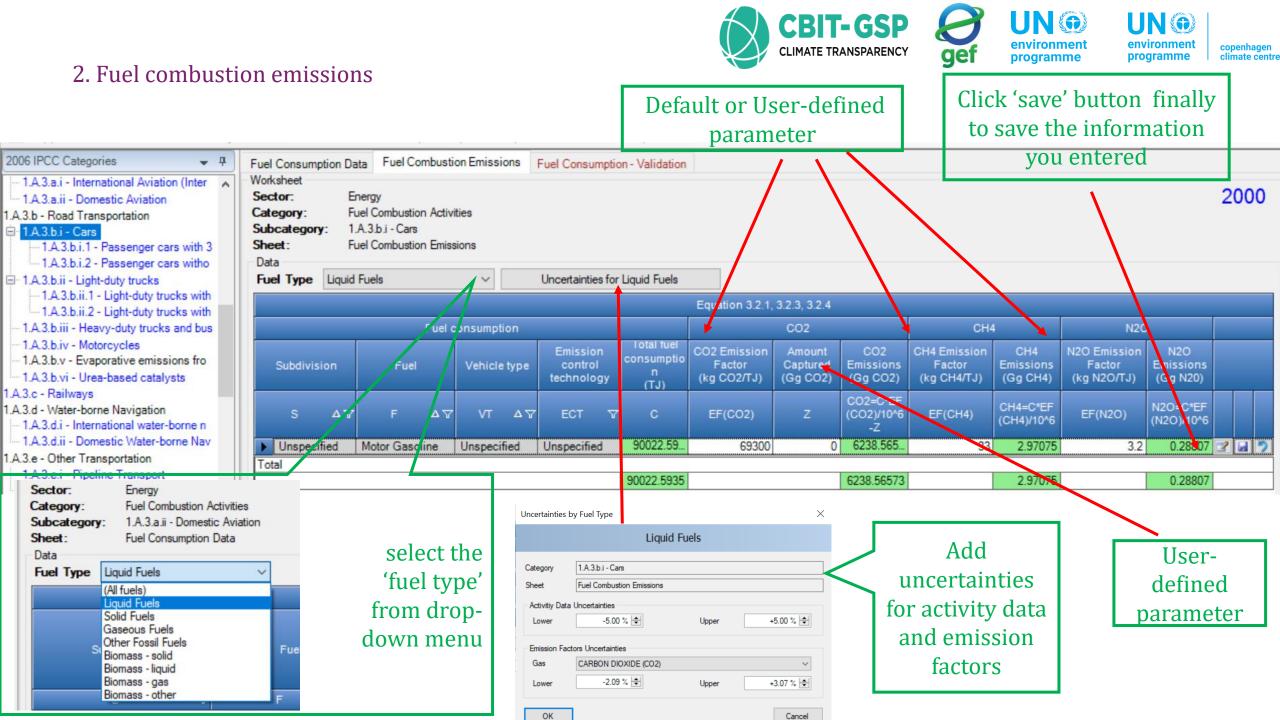
1.A.3.b – Road transportation

 In IPCC inventory tool, worksheets for sub-categories 1.A.3.b.i – Cars and 1.A.3.b.ii – Light-duty vehicles have common formats

CBIT-GSP

CLIMATE TRANSPARENCY


programme


6

copenhagen climate centr

- There are 3 worksheets for each
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions
 - 3. Fuel consumption validation

CC Categories - 4		uel Combustion Emissio	ns Fuel Consumption	- Validation					
1.A.2.m - Non-specified Industry 1.A.3 - Transport 1.A.3.a - Civil Aviation 1.A.3.a.i - International Aviation (Intern 1.A.3.a.ii - Domestic Aviation 1.A.3.b - Road Transportation	Subcategory: 1.A.3.b.i	nbustion Activities - Cars nsumption Data							2020
🖨 1.A.3.b.i - Cars	Fuel Type Liquid Fuels	~							
				Equation 3.2.1, 3.2	.3, 3.2.4				
 1.A.3.b.ii - Light-duty trucks 1.A.3.b.ii.1 - Light-duty trucks with 1.A.3.b.ii.2 - Light-duty trucks with 1.A.3.b.iii - Heavy-duty trucks and bus 1.A.3.b.iv - Motorcycles 	Subdivision	Fuel	Vehicle type	Emission control technology	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
	S A7	- Γ Δ	۵ 7	Δ .	С	U V	CF	TC = C * CF	
1.A.3.b.vi - Urea-based catalysts	▶ A1	Gas/Diesel Oil	Unspecified	Unspecified	300	Gg (Auto CF)	43	12900	z 🖬 🎾 🗙
 1.A.3.c - Railways 1.A.3.d - Water-borne Navigation 1.A.3.d.i - International water-borne na 1.A.3.d.ii - Domestic Water-borne Navi 	* Total							12900	

3. Fuel consumption – validation

- It is good practice to compare the fuel sold statistics used in the Tier 1 approach with the result of this
- This provides an important quality check.
- Significant differences between the results of two approaches may indicate that one or both sets of statistics may have errors, and that there is need for further analysis.
- It is good practice to consider any differences and determine which data is of higher quality. (Except in rare cases like when large quantities of fuel sold for off-road uses etc.)
- Calculated quantities in this worksheet are not reported.

3. Fuel consumption validation

UN 🎯 environment programme

User-defined

parameter

qef

Total fuel

consumption

D = A * B * C

14000000

14000000

0.2

0.2

Conversion

Factor

(TJ/I)

Е

0.08

Total fuel

consumption

(TJ)

F=D*E

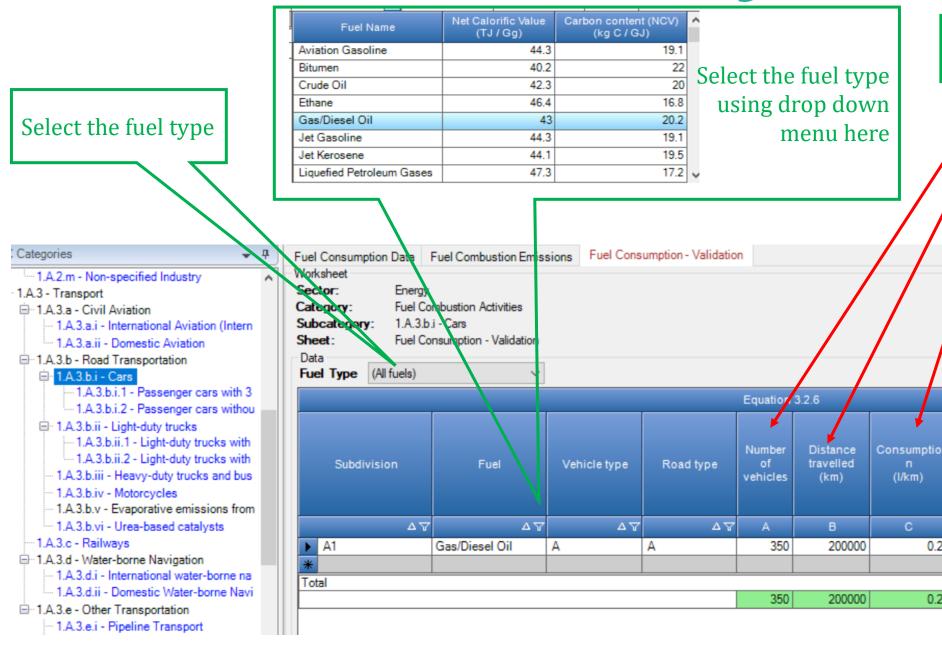
1120000

1120000 📝 🖬 ಶ 🗙

2

environment copenhagen climate centre programme

Click 'save'


button finally to

save the

information you

entered

2020

UN 💮 environment copenhagen climate centre programme

Let's do an example with the inventory tool!

Activity 03

Step 01: Open the worksheet fuel consumption data of either 1.A.3.b.i.1 – Passenger cars with 3-way catalysts, 1.A.3.b.i.2 – Passenger cars without 3-way catalysts, 1.A.3.b.ii.1 – Light-duty trucks with 3-way catalysts, 1.A.3.b.ii.2 – Light-duty trucks without 3-way catalysts, 1.A.3.b.iii – Heavy-duty trucks and buses or 1.A.3.b.iv – Motorcycles

Step 02: Select the fuel type as liquid fuels

Step 03: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	District A	
Fuel	Gas/ diesel oil	
Vehicle type	Motorcycles	
Emission control technology	Unspecified	
consumption	1000 TJ	

*the activity data used in this activity are not real. Just examples only for this activity.

Step 04: Save entered data

• Step 05: Open the worksheet Fuel combustion emissions and enter following data accordingly in the

dialog box uncertainties for liquid fuels

Entry pa	Entry						
Activity data uncertainties	Upper	+5.00%					
	Lower	-5.00%					
Emission factors uncertainties							
Select the gas as Carbon Dioxide and enter following (*when you are entering data for real GHG inventory calculation, please make sure to add uncertainties for other gases also)							
	Upper	+3.00%					
	Lower	-2.00%					

*these values are not real. Just examples only for this activity.

Step 06: Enter following data accordingly in the previously opened worksheet

Input parameter	Entry	Note
CO ₂ emission factor	Default value, 74100	You can use specific values also. But please use the default value for this activity.
Amount captured	0 (Zero)	
CH ₄ emission factor	Default value, 3.9	You can use specific values also. But please use the default value for this activity.
N ₂ O emission factor	Default value, 3.9	You can use specific values also. But please use the default value for this activity.

*the activity data used in this activity are not real. Just examples only for this activity.

Step 07: Save entered data

UN 💮 environment copenhagen climate centre programme

Let's do an example with the inventory tool!

Activity06

Step 01: Open the worksheet 1.A.3.b.vi – Urea-based catalysts and enter following data accordingly

Input parameter	Entry	Note
Subdivision	District A	
Amount of Urea-based additive consumed for use in catalytic converters	0.0001 Gg	
Purity (mass fraction of urea in the urea-based additive)	0.325	This is just an assumption

*the activity data used in this activity is not real. Just an assumption only for this activity.

Step 02: Save entered data

Step 03: Enter uncertainties

Entry param	Entry						
Activity data uncertainties	Upper	+1.00%					
	Lower	-1.00%					
Emission factors uncertainties							
0	Select the gas as Methane and enter following data (*when you are entering data for real GHG inventory calculation, please make sure to add uncertainties for other gases also)						
	Upper	+1.00%					
	Lower	-1.00%					

*these values are not real. Just an assumption only for this activity.

copenhagen climate centre

Urea-based catalysts

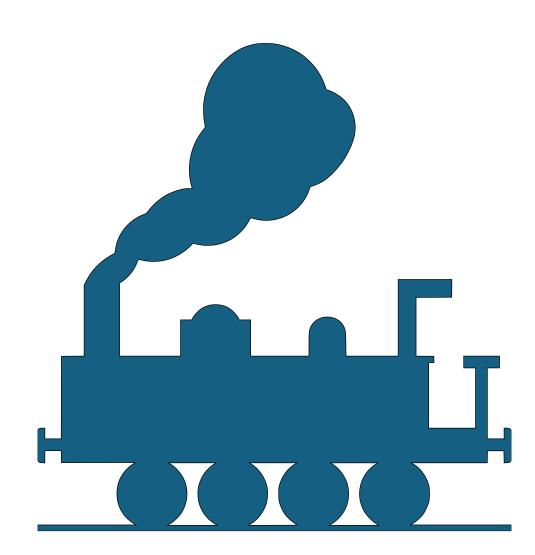
4

Results

Urea-based Catal	ysts	
Worksheet		
Sector:	Energy	2020
Category:	Urea-based Catalysts	
Subcategory:	1.A.3.b.vi - Urea-based catalysts	
Sheet:	CO2 Emissions from Urea-based Catalysts	
Data		

Equation 3.2.2									
Subdivision		Amount of Urea-based Additive Consumed for Use in Catalytic Converters (Gg) (Fraction)		-based CO2 Emissions (Gg CO2)					
s Av		А	В	C=A*12/60*B*44/12					
Unspecified		0.0002	0.325		0.00005	2		っ	X
*						2			
Total									
		0.0002			0.00005				

UN 💮 environment programme copenhagen climate centre


Uncertainties

			×						
	Uncert	ainties							
Category	1.A.3.b.vi - Urea-based catalys	sts							
Sheet	CO2 Emissions from Urea-based Catalysts								
Activitiy Data	Activitiy Data Uncertainties								
Lower	-1.00 % 🜩	Upper	+1.00 % 🚖						
Emission Fact	tors Uncertainties								
Gas	CARBON DIOXIDE (CO2)		\sim						
Lower	-1.00 % 🜩	Upper	+1.00 % 보						
OK]		Cancel						

nt copenhagen e climate centre

RAILWAYS

environment programme climate centre

General method for emissions from locomotives								
Emission = $\sum_{j} [fuel_{j} * EF_{j}]$								
Parameter	meter Description Unit							
Emission	Emissions of CO ₂	kg						
fuel _j	fuel _j Fuel type j consumed (as represented by fuel sold) T							
EF _j	kg/TJ							
j	Fuel type	N/A						

Tier 1 approach use fuel-specific default emission factors assuming that for each fuel type the total fuel is consumed by a single locomotive type

Default EF values for Tier 1 calculations are available in IPCC guideline >> Volume 2 >> Chapter 3

Calculation example to find CO₂ emissions from railways in Philippines 2010, using general method (Tier 1)

Fuel type				IPCC default CO ₂ hission factor (kg/TJ)		Convers facto (TJ/ kt	r	Emissions = Fuel consumption * EF
Diesel	1.28		74100			41.87		Fuel consumption = 1.28 ktoe*41.87 TJ/ktoe = 53.5936 TJ E _{CO2} = 53.5936 TJ *74100 kg/TJ = 3,971,285.76 kg or 3.98 Gg
D EFAULT E	MISSION FAC	IORS FOR TH	TABLE 3.4.1 E MOST COM	l MON FUELS US	ED FOR RAIL	TRANSPORT		* conversion factor is used in here
Gas		Diesel (kg/T	J) Sub-bituminous Coal (kg			(g/TJ		because activity data was present in
	Default	Lower	Upper	Default	Lower	Upper		ktoe (kilo tonne of oil equivalents)
CO ₂	74 100	72 600	74 800	96 100	72 800	100 000		
CH ₄ ¹	4.15	1.67	10.4	2	0.6	6		If CO ₂ has captured, it
N ₂ O ¹	28.6	14.3	85.8	1.5	0.5	5		GO ₂ If CO ₂ has captured, it must subtract from the total CO ₂ emissions

2006, IPCC default EF

Activity data Source: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

Calculation example to find CH₄ and N₂O emissions from railways in Philippines 2010, using Tier 1

Fuel type	consumption (ktoe)	2006 IPCC emission (kg/T	factor	Conversion factor (TJ/ ktoe)	Emissions = Fuel consumption * EF
Diesel	1.28	CH ₄ 4.15	N ₂ 0 28.6		Fuel consumption = 1.28 ktoe*41.87 TJ/ktoe = 53.5936 TJ E_{CH4} = 53.5936 TJ *4.15 kg/TJ = 222.41344 kg or 0.23 * 10 ⁻³ Gg E_{N20} = 53.5936 TJ * 28.6 kg/TJ = 1532.77696 kg or 1.54 * 10 ⁻³ Gg

TABLE 3.4.1 DEFAULT EMISSION FACTORS FOR THE MOST COMMON FUELS USED FOR RAIL TRANSPORT									
Gas	Diesel (kg/TJ)			Sub-bituminous Coal (kg/TJ)					
	Default	Lower	Upper	Default	Lower	Upper			
CO ₂	74 100	72 600	74 800	96 100	72 800	100 000			
CH ₄ ¹	4.15	1.67	10.4	2	0.6	6			
N ₂ O ¹	28.6	14.3	85.8	1.5	0.5	5			

conversion factor is used in here because activity data was

present in ktoe (kilo tonne of oil equivalents)

These default emission factors may, for non-CO2 gases, be modified depending on the engine design parameters. For that instances EF should be calculated using pollutant weighing factor as in below equation.

WE	EQUATION 3.4.4 IGHTING OF CH ₄ AND N ₂ O EMISSION FACTORS FOR SPECIFIC TECHNOLOGIES $EF_{i,diesel} = PWF_i \bullet EF_{default,diesel}$
nere: EF _{i,diesel}	= engine specific emission factor for locomotive of type i (kg/TJ)
PWF_i	= pollutant weighing factor for locomotive of type i [dimensionless]
EF _{default,diesel}	= default emission factor for diesel (applies to CH ₄ , N ₂ O) (kg/TJ)

TABLE 3.4.2 Pollutant weghting factors as functions of engine design parameters for uncontrolled excinse(dimensionless)								
Engine type	CH ₄	N ₂ O						
Naturally Aspirated Direct Injection	0.8	1.0						
Turbo-Charged Direct Injection / Inter-cooled Turbo-Charged Direct Injection	0.8	1.0						
Naturally Aspirated Pre-chamber Injection	1.0	1.0						
Turbo-Charged Pre-chamber Injection	0.95	1.0						
Inter-cooled Turbo-Charged Pre-chamber Injection	0.9	1.0						
Source: EEA 2005 (Table 8-9);								

Pollutant weighing factors IPCC>>Vol 2 >> Ch 3