

IPCC Inventory Software

Training of GHG Inventory National Experts to prepare first Biennial Transparency Report under ETF of the Paris Agreement:

Energy Sector

INTERGOVERNMENTAL PANEL ON Climate change

Step A: Set-up Fuel Manager

- The **Fuel Manager** contains data on carbon content and calorific value for each fuel used in the NGHGI.
- Access Fuel Manager from main ribbon the fuel manager should be populated before you start a GHG Inventory, but you may always add additional fuels or change a parameter.

Important: Consider that if you change parameters, data in worksheets automatically linked from the Fuel Manager will be updated.

- On the window's top border, select either NCV (Net Calorific Value) or GCV (Gross Calorific Value) as the Conversion Factor Type. Note that:
 - For each IPCC default fuel, when NCV is selected, the Calorific Value and the Carbon Content are pre-filled with IPCC default values, which can be replaced with user-specific values.
 - For GCV no IPCC default values are available, and so those need to be entered by the user.

i Mariager					
nversion Factor Type	NCV GCV Show user-defined fuels only				
Fuel Type	▼ Fuel Name	Primary Fuel 🛛 🖓	Net Calorific Value (TJ / Gg)	Carbon content (NCV) (kg C / GJ)	
Liquid Fuels	Aviation Gasoline		44.3	1	9.1
	Bitumen		40.2		22
	Crude Oil		42.3		20
	Ethane		46.4	1	6.8
	Gas/Diesel Oil		43	2	0.2
	Jet Gasoline		44.3	1	9.1
	Jet Kerosene		44.1	1	9.5
	Liquefied Petroleum Gases		47.3	1	7.2
	Lubricants		40.2		20
	Motor Gasoline		44.3	1	8.9
	Naphtha		44.5		20
	Natural Gas Liquids		44.2	1	7.5
	Orimulsion		27.5		21
	Other Kerosene		43.8	1	9.6
	Other Petroleum Products		40.2		20
	Paraffin Waxes		40.2		20
	Petroleum Coke		32.5	2	6.6
	Refinery Feedstocks		43		20
	Refinery Gas		49.5	1	5.7
	Residual Fuel Oil		40.4	2	1.1
	Shale Oil		38.1		20
	White Spirit and SBP		40.2		20
Solid Fuels	Anthracite		26.7	2	6.8
	Blast Furnace Gas		2.47	7	0.8
	Brown Coal Briquettes		20.7	2	6.6
	Coal Tar		28		22

Type and Name of default fuels cannot be changed and default fuels cannot be deleted.

Selected Conversion Factor Type is automatically applied in all the relevant worksheets across all the Inventory Years.

Any user-specific biomass derived fuel, e.g. dung, not covered in the definitions in table 1.1 (Vol.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "biomass-other"; these fuels are all considered "waste derived" Any user-specific fossil fuel not covered in the definitions in table 1.1 (Vol.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "Other fossil fuels"; these fuels are all considered "waste derived"

Save Undo Close

Step A: Set-up Fuel Manager

For each new (user-specific) fuel entry the following steps apply:

- 1. Click on the **asterisk** in the bottom-most row to add the user-specific fuel.
- 2. Select **fuel type** from the drop-down menu.
- 3. Enter specific fuel name.
- 4. Indicate (checkbox) if a **primary fuel** or not.
- 5. Enter its **calorific value** in TJ/Gg, (either NCV or GCV according to the selection made for entire Fuel Manager).
- 6. Enter carbon content in kg C/GJ.

7. Save

[To single out user-defined fuels only, the corresponding box on the window's top border shall be marked].

Enter the following in the Fuel Manager New Fuel Type: Northern Coal Mine, Primary fuel, NCV=20 and CC=27

Fuel Type	▼ Fuel Name	Primary Fuel 🗸	Net Calorific Value (TJ / Gg)	Carbon content (NCV) (kg C / GJ)
	Gas Works Gas		38.7	12
	Lignite		11.9	27
	Oil Shale / Tar Sands		8.9	29
	Other Bituminous Coal		25.8	25
	Oxygen Steel Furnace Gas		7.06	49
	Patent Fuel		20.7	26
	Sub-Bituminous Coal		18.9	26
Gaseous Fuels	Natural Gas (Dry)		48	15
Other Fossil Fuels	Industrial Wastes		11	3
	Municipal Wastes (nonbiomass fraction)		10	2
	Waste Oils		40.2	1
Peat	Peat		9.76	28
Biomass - solid	Charcoal		29.5	30
	Other Primary Solid Biomass		11.6	27
	Wood/Wood Waste		15.6	30
Biomass - liquid	Biodiesels		27	19
	Biogasoline		27	19
Biomass - liquid	Hydropower			
Biomass - liquid	Other Liquid Biofuels		27.4	21
Biomass - liquid	Solar Power		0	
Biomass - liquid	Sulphite lyes (Black Liquor)		11.8	
Biomass - gas	Landfill Gas		50.4	14
	Other Biogas		50.4	14
2	Sludge Gas	4	5 50.4	b 14
Biomass - other	Municipal Wastes (bion action)		11.6	27

y user-specific biomass derived fuel, e.g. dung, not covered in the definitions in table 1.1 (Vol.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "biomass other"; these fuels are all considered "waste derived user-specific fixed fixed on the definitions in table 1.1 (Vol.2, Chapter 1 of the 2006 IPCC Guidelines) shall be classified as "biomass-other"; these fuels are all considered "waste derived"

Note

Note: If the values assigned to a user-defined fuel added to the Fuel Manager are subsequently changed, such change is propagated by the Software to each calculation worksheet where that fuel is used.

Step B: Fuel Consumption Data

Step B, users compile worksheet **Fuel Consumption Data** either with a single row of data for the entire category, with its univocal name/code entered in Column |S| [e.g. "country name" or "unspecified" as selected from the dropdown menu], or with subnational aggregations, and for each of those the univocal name/code entered in **Column |S|**

Then, for each subdivision in Column |S| data are entered in worksheet **Fuel Consumption Data** row by row as follows:

1. Column |F|: select each fuel used from the drop-down menu (one row for each fuel) (Note that fuels shown in the dropdown menu are those listed in the Fuel Manager. Note that user shall select "Fuel Type" in the "Fuel Type" bar at the top, to enter data for each fuel one by one.)

Stationary combustion - flowcha

by Subdivision

2. Column |U|: enter unit of fuel consumption data (e.g. Gg, TJ, m³). To enter a user-specific unit (e.g. m3) select *Gg* (*Manual CF*) from the dropdown menu and overwrite *Gg* with the user-specific unit.

3. Column |C|: enter amount of fuel consumed.

4. Column |CF|: enter conversion factor to convert the consumption unit to an energy unit (TJ). Note that where Gg of fuel are converted to TJ, the NCV/GCV is sourced from the Fuel Manager and compiled by the Software as the conversion factor; while if the consumption unit is TJ the Software compiles the conversion factor cell with the value 1. Where other units are applied (e.g. m3) the user shall enter the relevant conversion factor here.

Step C: Fuel Consumption Emissions

In Step C, the Fuel Combustion Emissions worksheet is prefilled by the *Software* with a number of rows corresponding to the number of subdivision/fuel combinations entered in worksheet Fuel Consumption Data. Then:

- 1. For each row, users click the symbol "
 "
 on the left of the row to open a drop-down table where EF values are to be compiled.

 Euclosumation Data Euclosumation Emissions
- 2. Drop-down table can be filled: either with a single row of data, this is the case for IPCC default method; or with several rows, one row for each technology type, this is the case for IPCC Tier 3 method.
- Note that user shall select "Fuel Type" in the "Fuel Type" bar at the top, to enter data for each fuel one by one.

Workshe Sector: Categor Subcate Sheet: Data	et : Energy ry: Fuel Combustion Acti egory: 1.A.1.a.i - Electricity (Fuel Combustion Emi	ivities Generation issions	3								2022	
Fuel T	ype (All fuels)	\sim										
	(All fuels) Liquid Fuels				Eq	uation 2.4						
	Solid Fuels Gaseous Fuels Other Fossil Fuels		Fu	el	Total cor (1	nsumption [J]	CO2 Emission (Gg CO2)	IS	CH4 Emissions (Gg CH4)	N2O E (Gg	missions N20)	
	Peat Biomass - solid	7	F	Δγ		rc	CO2		CH4	٨	120	
•	North Biomass - liquid	N	lunicipal Wastes (nonbi	omass fraction)		4,000		0		0	0	
	Powe Biomass - gas Powe Biomass - other		narcoai iquefied Petroleum Gas	es		2,900		17.99	0.0014	15	0.0004	
÷	Unspecified	A	nthracite		40,000		3,922	0.7	76	0.096		
E E	Unspecified	G	ias/Diesel Oil			1,000	80 0.003)3	0.0006	
	Unspecified	N	atural Gas (Dry)			10,000	10,000 558 0.			0.001		
	Unspecified	F	eat			3,500		300	0.00.	30	0.00525	
	Tec	chnology			CO2		CH4	1	N2O			
	Type of Technology	Technolog penetratio (%)	y Consumption n (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)		
	т	Р	C=TC*(P/100)	EF(CO2)		CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6		
	Technology 3		100 3,500	106,000	5	366	1	0.0035	1.5	0.00525		
									Fuel Manage	er Time	e Series data entry	

tationary combustion - flowcha

Step C: Fuel Consumption Emissions - EFs

Compile each row as follows:

1. **Column [T]**: enter technology type. Where the IPCC default method is applied, the notation "unspecified" is selected.

2. **Column |P|:** enter technology penetration rate (%) associated with each technology type. The technology penetration rate apportions the total fuel consumed in the subdivision among technology types. Where the IPCC default method is applied, the value 100 is automatically entered by the *Software*. (*Note that for each fuel in each subdivision, summing up technology penetration rates of technologies reported shall always result in 100%*)

3. **Column |EF(CO₂)|:** select from the drop-down menu the IPCC default value or, for user-specific fuels, the value calculated by the *Software* as the carbon content multiplied by 44/12; otherwise enter the technology-type-specific value, in kg of CO₂ per TJ.

4. Column $|EF(CH_4)|$ and Column $|EF(N_2O)|$: select from the drop-down menu the IPCC default value for the given fuel or enter the technology- type-specific value, in kg of CH₄ per TJ or kg of N₂O per TJ, respectively.

Stationary combustion - flowchar

Step D: Fuel Combustion Emissions- Results

1. To estimate the total CO_2 emitted into the atmosphere, the amount of CO_2 produced across the process from that fuel used by that technology in that subdivision that has been **captured instead of emitted** into the atmosphere is to be entered in Gg CO_2 in Column |Z| of worksheet Fuel Combustion Emissions. Note that Column |Z| is accessed in worksheet Fuel Combustion Emissions by clicking the symbol " \square " on the left of the row (a drop-down table opens and Column |Z| becomes visible

2. Then, for each GHG, emissions from each source are calculated by the *Software*, in mass unit (Gg). Total emissions from each source of stationary combustion is the sum of all emissions from combustion of all fuels listed in all subdivisions.

t	ry: Fuel Combustion Ac egory: 1.A.1.a.i - Electricity Fuel Combustion Em	tivities Generation issions										2022
	(All fuels)	~										
						Eq	uation 2.4					
	Subdivision			Fue	el	Total cor (1	nsumption [J]	CO2 Emission: (Gg CO2)	s	CH4 Emissions (Gg CH4)	N2O E (G	missions 1 N2O)
	S	ΔV		F	ΔΥ	T	rc	CO2		CH4		120
	Northern		Munici	pal Wastes (nonbio	mass fraction)		4,000		383.48	0.13	32	0.0176
	Τe	chnology				CO2		CH4		N20		
******	Type of Technology	Technol penetra (%)	ogy tion	Consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
	т	Р		C=TC*(P/100)	EF(CO2)	z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	
	Technology 1	θ	60	2,400	91,700	10	210.08	30	0.072	4	0.0096	
	* Technology 2	θ	50	2,000	91,700	10	173.4	30	0.06	4 🗸	0.008	🕜 🖬 🄊 🗙
	* Tatal											
	lotal											

Do you notice the error in the image?

The *Software* has alerted you that the technology penetration rates are greater than 100%.

Comparing Sectoral and Reference Approaches

- You have just estimated GHG emissions from electricity generation – this estimation methodology is based on sectoral consumption, and part of the Sectoral Approach.
- The Reference Approach is designed to calculate CO₂ emissions from fuel combustion, starting from highlevel energy supply data. This approach does not distinguish between different source categories within the energy sector and only estimates total emissions from source category 1.A Fuel Combustion.
- Inventory Year Administrate Worksheets Tools Export/Import Reports Window Help **Reference** Approach Reference Approach Data Estimating Excluded Carbon Comparison Allocati **Uncertainty Analysis** Sector Energy Key Category Analysis Category Fuel combustion activities Category code 1A Sheet Comparison of CO2 Emissions from Fuel Combustion Sectoral Approach **Fuel Types** energy use and feedstocks) Liquid Fuels: 22 item(s) 257.99 40,000 3,922 -100 Solid Fuels: 16 item(s) Gaseous Fuels: 1 item(s) 10.000 558 -100 Other Fossil Fuels: 3 item(s) 383.48 -100 4,400 mary Fuels Industrial Wastes Municipal Wastes (nonbio 4,400 383.48 -100 Waste Oils 0 Total 383.48 -100 4 400 Peat: 1 item(s)

Main menu \rightarrow To<u>ols \rightarrow Reference</u> Approach

- The *Software* can calculate the Reference Approach and make a comparison between emissions estimated using the Reference and Sectoral Approaches.
- In the **Comparison tab** of the Reference Approach menu, the energy consumption and emissions from the data entered for electricity generation (under Sectoral Approach).

Comparing Sectoral and Reference Approaches

 Image: Application
 Database
 Inventory Year
 Administrate
 Worksheets
 Tools
 Export/Import
 Reports
 Window
 Help

 Reference Approach Data
 Estimating Excluded Carbon
 Comparison
 Allocation of CO2 from NEU
 Image: Comparison
 Allocation of CO2 from NEU
 Image: Comparison
 Comparison
 Allocation of CO2 from NEU
 Image: Comparison
 Image: Comparison
 Comparison
 Comparison
 Comparison
 Comparison
 Comparison
 CO2 from NEU
 Image: Comparison
 Comparison

The *Software* calculates CO_2 emissions from fuel combustion categories for the top-down reference approach using the following worksheets:

- Fuel Manager: information on *carbon content* and *calorific value*
- Reference Approach Data: for each fuel type calculates apparent consumption; uses data *calorific value* and *carbon content* (filled in automatically from the Fuel Manager), the excluded carbon, and the fraction oxidized. From this information the worksheet calculates actual CO₂ emissions.
- Estimating Excluded Carbon: contains for specific fuels the amount of the total estimated quantity of carbon which does not lead to fuel combustion emissions, calculates the amount of carbon that shall be excluded from the emissions.
- **Comparison**: Compares summary information on total estimated AD and CO₂ emissions from the Reference and Sectoral approaches.
- Allocation of CO₂ from NEU summarizes the total CO₂ excluded from the reference approach, by fuel. This worksheet allows for reporting the CO₂ emissions from NEU reported elsewhere in the NGHGI, identifying in which category they are reported.

Step B. Reference Approach Data

We have already explored the Fuel Manager, so here we start with Step B. Reference Approach Data. For each fuel, enter the following information:

- 1. Column |Unit|: select or enter manually the measurement unit used (e.g. Gg, TJ, m³). (see "+" sign to expand to the full fuel list)
 - Reference Approach Data ating Excluded Carbon Comparison Allocation of CO2 from NEU 2022 Fuel combustion activities Category 2 3 Liquid Fuels: 22 item(s 53.41 Crude Oil Natural Gas Liquid wiation Gase Bitumen 40.2 46.4 Gas/Diesel Oil Jet Gasoline 44.3 44 iquefied Petroleu 3.000 40.2 ubricants 44 Motor Gase 44.5 43.8 Other Kerosene 40.2 Other Petroleum 40.2 32.5 etroleum Coke 49.5 40.4 Residual Fuel (38.1 Shale Oil White Spirit and Solid Fuels: 16 item(s 40,50 Primary Fuels 41,000 Anthracite Coking Coal 27.6 Jorthern Coal Mine Oil Shale / Tar Sand) Values in column K are taken from column E of Estimating Excluded Carbon workshee

Estimating Excluded Carb

- 2. **Column |A|:** input the amount of production of the fuel (primary fuels only)
- 3. Column |B|: input the amount of imported fuel
- 4. Column |C|: input the amount of exported fuel
- 5. **Column |D|:** input the amount of fuel used for international bunkers, if applicable

6. **Column |E|:** input the amount of stock change. Note that an increase in stocks is a positive stock change which withdraws supply from consumption. A stock reduction is a negative stock change which, when subtracted in the equation, causes an increase in apparent consumption

Step B. Reference Approach Data

For each fuel, enter the following information (continued):

7. Column [F]: the *Software* estimates the amount of apparent consumption of the fuel.

8. **Column |G|:** conversion factor in (TJ/Unit) is filled automatically from the Fuel Manager.

Note that where Gg of fuel are converted to TJ, the NCV/GCV is sourced from the Fuel Manager and compiled by the Software as a conversion factor; while if the consumption unit is TJ, the Software compiles the conversion factor cell with the value 1. Where other units are applied (e.g. m³) the user shall enter relevant conversion unit here.

egory Fuel ci egory code 1.A et CO2 fr	ombustion activities om energy sources - Reference	Approach						9	Q						2
					SI	ep 1			Ste	ep 2	Ste	:р 3	Ste	ep 4	-
			Production (Unit)	Imports (Unit)	Exports (Unit)	International Bunkers (Unit)	Stock change (Unit)	Apparent Consumption (Unit)	Conversion Factor (TJ/Unit)	Apparent Consumption (TJ)	Carbon content (t C/TJ)	Total Carbon (Gg C)	Excluded Carbon (Gg C)	Net Carbon Emissions (Gg C)	Fraction of Carbon Oxidised
Fue	l Types	Unit	A	в	C	D	E	F=A+B-C-D-E	G	H=F*G	1	J=H*I/1000	к	L=J-K	М
quid Fuels: 22 item(s)					L.				3 090		53,418		53 418	
Primary Fuels	Crude Oil	Ga	1			1	ſ	0	42.3	0	20	0		0	
r mindry r deis	Natural Gas Liquids	Go	-					0	44.2	0	17.5	0		0	
	Orimulsion	Ga	+ +					0	27.5	0	21	0		0	
Secondary Fuels	Aviation Gasoline	Ga						0	44.3	0	19.1	0		0	
	Bitumen	Ga						0	40.2	0	22	0		0	
	Ethane	Ga						0	46.4	0	16.8	0		0	
	Gas/Diesel Oil	TJ		100		10		90	1	90	20.2	1.818		1.818	
	Jet Gasoline	Ga						0	44.3	0	19.1	0		0	
	Jet Kerosene	Ga						0	44.1	0	19.5	0		0	
	Liquefied Petroleum Gases	TJ		3.000				3.000	1	3.000	17.2	51.6		51.6	
	Lubricants	Ga				1		0	40.2	0	20	0		0	
	Motor Gasoline	Ga						0	44.3	0	18.9	0		0	
	Naphtha	Gg						0	44.5	0	20	0		0	
	Other Kerosene	Gg						0	43.8	0	19.6	0		0	
	Other Petroleum Products	Gg						0	40.2	0	20	0		0	
	Paraffin Waxes	Gg	-					0	40.2	0	20	0		0	
	Petroleum Coke	Gg						0	32.5	0	26.6	0		0	
	Refinery Feedstocks	Gg						0	43	0	20	0		0	
	Refinery Gas	Gg						0	49.5	0	15.7	0		0	
	Residual Fuel Oil	Gg						0	40.4	0	21.1	0		0	
	Shale Oil	Gg						0	38.1	0	20	0		0	
	White Spirit and SBP	Gg						0	40.2	0	20	0		0	
did Fuels: 16 item(s)										40,500		1,085.4		1,085.4	
Primary Fuels	Anthracite	TJ	41,000			500		40,500	1	40,500	26.8	1,085.4		1,085.4	
	Coking Coal	Gq						0	28.2	0	25.8	0		0	
	Lignite	Gg						0	11.9	0	27.6	0		0	
	Northern Coal Mine	Gg						0	20	0	27	0		0	
	Oil Shale / Tar Sands	Gg						0	8.9	0	29.1	0		0	
	Other Bituminous Coal	Ga						0	25.9	0	25.8	0		0	

) Values in column K are taken from column E of Estimating Excluded Carbon worksheet

INTERGOVERNMENTAL PANEL ON Climate change

Step C. Estimating Excluded Carbon

For each fuel in the Column |Fuel Types|, enter the following information:

- 1. Column [A]: enter the estimated quantity of the fuel not used for combustion purposes (e.g. natural gas used as a feedstock for ammonia production, or coking coal used in the iron and steel industry).
- 2. Column |Unit|: select or enter manually the measurement unit used (e.g. Gg, TJ, m³).

3. **Column |B|:** conversion factor in TJ/Unit is filled automatically from the Fuel Manager.

4. **Column |D|:** carbon content is filled automatically from the Fuel Manager in t C/TJ.

5. Excluded carbon in **Column |E|** is then automatically included in **Column |K|** of the **Reference Approach Data** tab.

INTERGOVERNMENTAL PANEL ON CIIMATE CNANE

Fuel Manager

WMO

Import from Exce

Export to Excel

UNEP

Step D. Reference Approach Data Tab

Input of EFs for the Reference Approach requires the following steps:

- 1. Column [I]: carbon content is filled automatically from the Fuel Manager in t C/TJ.
- 2. Excluded carbon in Column [K] is taken automatically from the Excluded Carbon worksheet

3. **Column |M|:** enter fraction of oxidized carbon.

Note if no information on this factor is available, the value "1" shall be entered to proceed with calculations

4. *Software* estimate CO₂ emissions following the Reference Approach

Recall: gray shading means that data contained in that cell are automatically pooled from somewhere else.

INTERGOVERNMENTAL PANEL ON Climate change

Step E. Comparison

The *Software* provides results of CO₂ estimations under the Reference and Sectoral approaches and performs a comparison between the two approaches by each fuel, fuel type and total for the NGHGI For each fuel, enter following information:

- Worksheet Comparison presents the results for the Reference Approach, as well as main AD (apparent consumption). This worksheet also summarizes the main AD and CO₂ emissions calculated under the Sectoral Approach, by fuel type. In the Columns [Difference], the Software provides the comparative difference between the Reference and Sectoral approaches in terms of energy consumption and CO₂ emissions.
- The 2006 IPCC Guidelines, Section 6.8, provide possible reasons for a gap between the two approaches, which is generally expected to be less than 5%. For higher percent differences, reporting programs typically require users to provide a clear explanation and justification.

In this example, which reason might you provide for the sectoral approach being greater than the sectoral approach for liquid fuels?

Application Databa	se Inventory Year	Administrate Wo	orksheets Too	Is Export/Import	t Reports	Window Help	0		
Reference Approach Data	Estimating Excluded (Carbon Comparison	Allocation of CO	02 from NEU					
Sector Energy Category Fuel com Category code 1.A Sheet Comparis	bustion activities	m Fuel Combustion							
			Reference	e Approach		Sectoral A	pproach	Diffe	erence
Fuel 1	'ypes	Apparent Consumption (TJ)	Excluded consumption (TJ)	Apparent Consumption (excluding non- energy use and feedstocks) (TJ)	CO2 Emissions (Gg)	Energy Consumption (TJ)	CO2 Emissions (Gg)	Energy Consumption (%)	CO2 Emissions (%)
Liquid Fuels: 22 item(s)		3,090	1,000	2,090	132.79933333	3,900	257.99	-46.41025641	-48.52539504
 Solid Fuels: 16 item(s) 		40,500	0	40,500	3,979.8	40,000	3,922	1.25	1.47373789
⊕ Gaseous Fuels: 1 item(s)	1	11,900	200	11,700	656.37	10,000	558	17	17.62903226
Other Fossil Fuels: 3 iter	n(s)	4,000	0	4,000	363	4,400	383.48	-9.09090909	-5.34056535
		3,500	0	3,500	367.1745	3,500	366	0	0.32090164
Total									
		000 000	1 200	01 700	E 400 14000	C1 000	E 407 47	0.01010100	0.01070017

Elerence approach - Bowenart EPA End Manager Davis Feld lat, and user by Fel STEP B STEP D STEP D STEP D STEP D STEP D STEP D STEP C Control / anotool STEP D STEP D STEP C Control / anotool STEP C STEP D STEP C Control / anotool STEP C STEP D STEP C Control / anotool STEP C STEP D STEP C S

Step F. Allocation of CO2 from NEU

For each relevant fuel in Column |Fuel Types| that is used for NEU and for which CO₂ emissions from the use of that fuel are reported elsewhere, enter the following information:

 Column |CO2neu|: enter the quantity of CO₂ emissions from NEU that is reported elsewhere in the NGHGI, in GgCO₂ (e.g. CO2 emissions from the liquified petroleum gases used in petrochemical production).

2. Column |CAT|: for each relevant fuel, click on the editing box in the left-hand side of the column and select one or more categories of the inventory where these CO₂ emissions are reported.

ector Energy tegory Fuel combustion activities tegory code 1.A Neet Allocation of CO2 from NE	EU					202
	CO2 Excluded from Reference Approach (Gg CO2)	CO2 emissions from NEUs reported in the inventory (Gg CO2)		Categories under which CO2 emissions from NEU are reported		
Fuel Types	EXCLra	CO2neu		CAT		
Liquid Fuels: 22 item(s)	63.06666667	63				
Aviation Gasoline			2		2	
Bitumen			2		3	
Crude Oil			2		2	
Ethane			2		3	
Gas/Diesel Oil			2		2	
Jet Gasoline			3		3	
Jet Kerosene			3		2	
Liquefied Petroleum Gases	63.06666667	63	2	Ethylene	2	
Lubricants			2		2	
Motor Gasoline			2		2	
Naphtha			3		3	
Natural Gas Liquids			2		2	
Orimulsion			18		2	
Other Kerosene			3		21	a 🤊
Other Petroleum Products			3		2	
Paraffin Waxes			2		2	
Petroleum Coke			2		2	
Refinery Feedstocks			3		3	
Refinery Gas			3		2	
Residual Fuel Oil			3		2	
Shale Oil			3			
White Spirit and SBP			3		2	
Solid Fuels: 16 item(s)	0	0				
Dascous Facilis. Triterin(a)	1144				1	
Natural Gas (Dry)	11.22	11	3	Methanol	2	

INTERGOVERNMENTAL PANEL ON Climate change

Energy Sector: Hands-on Exercise

Selected key categories in Energy

- 1A1a Electricity production, CO₂
- 1A3b Road transport, CO₂
- 1A2m Nonspecific Industries, CO₂
- 1A3a Civil Aviation, CO₂
- 1B2b Natural gas, CH₄ (Trend only)

Electricity Generation – CO2

Tier applied	Tier 1/Tier 2						
Key category	Yes, CO2 level and trend						
Data Needs – <mark>red</mark> requires country-specific data entry							
	IPCC Default Method		Tier 2				
Ι	Worksheet : Fuel consumption Data Fuel Combustion Emissions		Worksheet : Fuel consumption Data Fuel Combustion Emissions				
Amount of fuel c EF (assumes a cas	combusted, by fuel/category rbon oxidation factor of 1)	Amount of for Country-spect contents, oxid	uel combusted by fuel/category affic EF (based on country-specific carbon lation factors, fuel quality)				

- India has calculated directly based on carbon content, and not exactly used IPCC defaults (which are rounded). In this case, for *Software*, probably best to directly use defaults for those fuels
- Country-specific fuels have fraction oxidized <1 so EFs should be overwritten for these fuels to account for fraction oxidized (carbon content will already be reflected from fuel manager)
- India includes some carbon stored (e.g. from use of coking coal)-is this correct or is this an NEU of fuel that is to be subtracted from AD consumption?
- I see case where the same fuel has different EF in different sector (e.g. non-coking coal in files) you can overwrite value

Road Transport – CO2

Tier applied	??
Key category	Yes, CO2 level and trend

Data Needs – <mark>red</mark> requires country-specific data entry					
IPCC Default Method	Tier 2				
Worksheet : Fuel consumption Data Fuel Combustion Emissions	Worksheet : Fuel consumption Data Fuel Combustion Emissions				
Amount of fuel combusted, by fuel/category EF (assumes a carbon oxidation factor of 1)	Amount of fuel combusted by fuel/category Country-specific EF (based on country-specific carbon contents)				

CO2 emissions from use of urea-based additives in catalytic converters (non-combustive emissions) are included in the GL in this section, and in the category tree of the *Software*, but will be reported in 2.D.3.d in CRT

• Calculation worksheet not available

Figure 3.6.2 Estimating aircraft emissions with Tier 2 method **Civil Aviation – CO2** Tier applied Key category Yes, CO2 level only Data Needs – red requires country-specific data entry DOMESTIC **IPCC** Default Method Tier 2 Worksheet : Worksheet : Fuel consumption for domestic Total domestic and international • and international fuel consumption Number of LTOs for both Emission factor • domestic and international, preferably by aircraft type EF for LTO (defaults available for • specific aircraft type) Fuel consumption / LTO (defaults available for specific aircraft type) Cruise fuel EF

Default method should only be used for small aircraft using aviation gasoline; jet-fuelled only in cases where no other data are available

Natural Gas- CH4

Tier applied	1
Key category	Yes, CH4 trend only

Data Needs – <mark>red</mark> requires country-specific data entry					
IPCC Default Method	Tier 2				
Worksheet: Oil and Natural Gas	Worksheet: Oil and Natural Gas				
*Information on the relevant categories (e.g. industry segment, subcategory (e.g. conventional oil), activity type (e.g. total oil production)	*Information on the relevant categories (e.g. industry segment, subcategory (e.g. conventional oil), activity type (e.g. total oil production)				
*Amount of that activity	*Amount of that activity				
*Use of default EFs	*Use of country-specific EFs				

• Cross walk your data availability with the type and units of the default data in Table 4.2.5 in the 2006 IPCC Guidelines? Appears several categories can be calculated with existing data.

INTERGOVERNMENTAL PANEL ON Climate chanee

• What industry segment in calculation worksheets are "leakage" and "flaring" assigned to?

Natural Gas- CH4

- ✓ After identifying the category: Subdivision/Industry segment / Subcategory you will want to enter the AD associated with that category
- Column |AD|: AD can be entered in any relevant units in the Software, with the corresponding units reported in Column |U|
 - ✓ However, for Interoperability with the UNFCCC ETF Reporting Tool, the AD and units must be consistent with those in the <u>Tables 4.2.4 and 4.2.5</u> of the 2006 IPCC Guidelines.
 - ✓ For India, AD in calculation worksheets would need to be converted.

Oil and Natural Gas Worksheet Sector: Energy Category: Fugitive Emissions from Fuels - Oil and Natural Gas Subcategory: 1.B.2.a.iii.2 - Production and Upgrading Sheet: CO2, CH4 and N2O from fugitive emissions from fuels by source categories Data Energy							For interoperability with UNFCCC ETF tool, the units in Column U must be the same as the Units for the default EFs								19) 90	
	Equation 4.2.1																
	Activity Data							CO2			CH4			N2O			
Subdivi	sion	Industry Segment	Subcategory	Activity Type	Activity Data	Unit for AD	Emission Eccl (Gg CO2/U)	Amount Captured (Gg CO2)	CO2 Emission: (Gg CO2	Emission (Gg CH	Factor VU)	CH4 Emissions (Gg CH4)	Emission Fa (Gg N2O/	Actor Emissio U) (Gg N20	ns))		
s	Δγ		SC ∆⊽	AT AV	AD	U	EF(CO2)	z	CO2 = A* E (CO2) - Z	F EF(CH	14)	CH4 = A * EF (CH4)	EF(N2O) N2O = A* (N2O)	EF		
🔭 Unspecifi	ed	Oil Production	Default Weighted	Total oil production	10.3	10^3 m3	θ			θ			θ			2	7 X
*							c	ountry/Territory		Value	6	Unit	Lower limit	Upper limit	Emis	sion S	ource
Total	Total Deve								ed Countries			0.0022 Gg per 10^3 m3		0 0.0044		Fugitives	
C								ng/Transition Countries			196 Gg per 10^3 m3		0.01715	0.1764	0.1764 Fugitiv		

WMO UNEP

Coal Mining - CH4 (underground and surface)

Tier applied

Key category No

Data Needs – <mark>red</mark> requires country-specific data entry							
IPCC Default Method	Tier 2						
Worksheets : Coal production from underground mines ; Emissions from underground mines							
*Among of coal produced from underground mines *Use of default EFs *Amount captured / recovered (if applicable)	*Among of coal produced from underground mines *Use of country-specific or basin-specific Efs *Amount captured / recovered (if applicable)						

- Questions to consider:
 - Great that IPCC defaults and country-specific EFs considered side by side in spreadsheet
 - There is a relatively large difference between country specific and default this does not mean the country-specific value is incorrect, you may just want to explain why the country specific value is appropriate for national conditions.
 - With country specific EFs, appears you can report in three subdivisions?
 - Recovery?

Coal Mining - CH4 (underground and surface)

- Column |S|: You have three sets of mines with very different EFs, consider three separate subdivisions?
- ✓ In Emissions from underground mines Select "Methane (CH4)" from Gas
- ✓ In Column |EF| select default EF from dropdown or enter country specific EF
- ✓ Enter CH4 recovered

INTERGOVERNMENTAL PANEL ON Climate Change

Questions?