Training on 2006 IPCC Guidelines for preparing National GHG Inventory:

IPCC Inventory tool: Solid Waste

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

4.D – Wastewater treatment and discharge

4.D – Wastewater treatment and discharge

• 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 01: Estimate total organically degradable carbon in wastewater (TOW)

	Parameter	Value	Unit
Р	Country population in inventory year, (person)	persons	
BOD	Country-specific per capita BOD in inventory 40g/perso		
I	Correction factor for additional industrial BOD 1 discharged into sewers		

	EQUATION 6.3 TOTAL ORGANICALLY DEGRADABLE MATERIAL IN DOMESTIC WASTEWATER $TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$					
Ρ	=	118,569,422	persons			
BOD	=	40	g/person/day 👞 Default			
I	=	1				
тоw	=	118569422*40*0.001*1*365	kg BOD/yr			
	=	1,731,113,561.20	kg BOD/yr			

TABLE 6.4 Estimated BOD_5 values in domestic wastewater for selected regions and countries					
Country/Region	BOD ₅ (g/person/day)	Range	Reference		
Africa	37	35-45	1		
Fgynt	34	27-41	1		
Asia, Middle East, Latin America	40	35-45	1		
India	34	27-41	1		
West Bank and Gaza Strip (Palestine)	50	32-68	1		
		10 14			

EQUATION 6.3 TOTAL ORGANICALLY DEGRADABLE MATERIAL IN DOMESTIC WASTEWATER $TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$						
Р	=	118,569,422	persons			
BOD	=	40	g/person/day 👞 Default			
I	=	1				
TOW	=	118569422*40*0.001*1*365	kg BOD/yr			
	=	1,731,113,561.20	kg BOD/yr			

TABLE 6.4 Estimated BOD_5 values in domestic wastewater for selected regions and countries						
Country/Region	BOD ₅ (g/person/day)	Range	Reference			
Africa	37	35-45	1			
Fgypt	34	27-41	1			
Asia, Middle East, Latin America	40	35-45	1			
India	34	27-41	1			
West Bank and Gaza Strip (Palestine)	50	32-68	1			
	10	10.10				

Tier 2 Calculation

TOTAL ORG	GANICALLY DE TOV	EQUATION 6.3 CGRADABLE MATERIAL IN DOMESTIC WASTEW $W = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$	ATER
P	=	118.569.422	persons
BOD	=	42	g/person/day
<u> </u>	=	1.25	
TOW	=	118569422*42*0.001*1.25*365	kg BOD/yr
	=	2,272,086,549.08	kg BOD/yr

As country's wastewater BOD level is not available, value from the value range need to be used

Step 02: Select the pathway and systems according to country activity data

Step 03: Obtain the emission factor for each relevant domestic wastewater treatment/discharge pathway or system.

	Parameter	Value	Unit
j	Treatment/discharge pathway or system	Stagnant sewer	
Во	Maximum CH4 producing capacity	0.6	kg CH4/kg BOD
MCFj	Methane correction factor	0.5	fraction

Step 04: Estimate emissions, adjust for possible sludge removal and/or CH4 recovery and sum the results for each pathway/system

	Parameter	Value	Unit	
TOW	WTotal organics in wastewater in inventory year1731113561kg BOD/y			
S	S Organic component removed as sludge in inventory year 100 kg BOD/yr			
Ui	Fraction of population in income group i in inventory year	0.06		
Ti,j	Degree of utilisation of treatment/discharge pathway or system, j, for each income group fraction i in inventory year	^{1,} 0.67		
i	Income group: rural, urban high income and urban low income	Urban High Income		
j	ach treatment/discharge pathway or system Sewer			
EFj	EFj Emission factor		kg CH4 / kg BOD	
R	R Amount of CH4 recovered in inventory year 0 kg CH4/yr			

Previous calculations Assumed value as EOUATION 6.1 TOTAL CH₄ EMISSIONS FROM DOMESTIC WASTEWATER default value or country $CH_4 \ Emissions = \left| \sum_{i,j} \left(U_i \bullet T_{i,j} \bullet EF_j \right) \right|_1 \left(TOW - S \right) - R$ specific values are not available TOW 1,731,113,561.20 kg BOD/yr = **Tier 2 Calculation** 100 kg BOD/yr S = 0.06 U T_{i.i} 0.67 EQUATION 6.1 Urban High Income TOTAL CH4 EMISSIONS FROM DOMESTIC WASTEWATER Sewer $CH_4 \ Emissions = \left| \sum_{i,j} \left(U_i \bullet T_{i,j} \bullet EF_j \right) \right| \left(TOW - S \right) - R$ EFi 0.3 kg CH4 / kg BOD 0 kg CH4/yr R $\left[\sum (0.06 \times 0.67 \times 0.3)\right](1,731,113,561.208 - 100) - 0 \text{ kg CH4/yr}$ CH₄ Emissions TOW 55,717,613.18 kg BOD/yr = 100 kg BOD/yr S = [(0.01206)](1,731,113,461.20) - 0 kg CH4/yr0.06 Ui = 0.9 T_{i.i} = 20,877,228.34 kg CH4/yr **Urban High Income** = = Sewer EF 0.48 kg CH4 / kg BOD = **IPCC** default → 12 kg CH4/yr R = From Table 6.5 (India – under Asian region, Urban High $[\sum (0.06 \times 0.9 \times 0.48)](55,717,613.18 - 100) - 12 \text{ kg CH4/yr}]$ CH₄ Emissi = income), as country specific values is not available (0.02592)](55,717,513.18) - 12 kg CH4/yr Average value considering other country defaults, as value for 1,444,185.94 kg CH4/yr = Philippine sis not available Assumed value

Step 02: Estimate annual per capita protein consumption

	Parameter	Value	Unit
Protein _{supply}	Annual per capita protein supply	31.39	kg protein/person/yr
FPC	Fraction of protein consumed	0.96	

= 86*365/1000

chemicals

1.08 1.17 (USA)

1.07 (Australia)

No data

No data

No data 1.13 (India)

No data

1.09

1.13

1.08

1.01

1.06

1.02

1.04

	EQ Estimat	UATION 6.10A (NEW ION OF PROTEIN CO	V) NSUMED	-	Default f	TABLE 6.10A (NEW ACTORS FOR DOMESTI
	Prote	ein= Protein _{s.PPLI} • F	TPC	-	Region ¹	Protein consumed ² as fraction of protein supply
					Europe	0.85
Proteinsupply	=	31.39	kg protein/person/yr		North America and Oceania	0.80
EDC	_	0.06			Industrialised Asia	0.86
FPC	-	0.90			Sub-Saharan Africa	0.98
					North Africa, West and central Asia	0.90
Protein	=	31.39*0.96	kg protein/person/yr		South and Southeast Asia	0.96
	=	30.13	kg protein/person/yr		Latin America	0.92

Step 03: Estimate total nitrogen in wastewater

	Parameter	Value	Unit
P _{treatment_j}	Human population who are served by the treatment pathway j	106,712,480	person/yr
Protein	Annual per capita protein consumption	0.96	kg protein/person/yr
F _{NPR}	Fraction of nitrogen in protein	0.16	kg N/kg protein
F _{NON-CON}	Factor for nitrogen in non-consumed protein disposed in sewer system	1.1	kg N/kg N
F _{IND-COM}	Factor for industrial and commercial co-discharged protein into the sewer system	1.25	kg N/kg N
N _{HH}	Additional nitrogen from household products added to the wastewater	1.1	

Total ni <i>TN_{dom}</i>	TROGEN IN DOM $_{i} = (P_{treatment})$	EQUATION 6.10 (NEW) MESTIC WASTEWATER BY TREATMENT PATHWAY • Protein • $F_{NPR} • N_{HH} • F_{NON-CON} • F_{IND-COM}$)]	Philippines Population 2024 is 118,569,42 Taken as 90% of the total population =118,569,422*90% =106,712,480
P _{treatment_j}	=	106,712,480 person/yr		Derived from previous calculation
Protein F _{NPR}	=	30.13 kg protein/person/y 0.16 kg N/kg protein		IPCC Default
F _{NON-CON}	=	1.1 kg N/kg N 1.25 kg N/kg N		Default for South and Southeast Asia
N _{HH}	=		Default	
TN _{DOM_j}	=	106712479.8*30.13*0.16*1.1*1.1*1.25 kg N/yr		
	=	778,203,405.41 kg N/yr		

Tier 1 Calculation Philippines Population 2024 is 118,569,422 Taken as 90% of the total population EQUATION 6.10 (NEW) =118,569,422*90% TOTAL NITROGEN IN DOMESTIC WASTEWATER BY TREATMENT PATHWAY =106,712,480 $TN_{DOM_{j}} = \left(P_{treatment_{j}} \bullet Protein \bullet F_{NPR} \bullet N_{HH} \bullet F_{NON-CON} \bullet F_{IND-COM}\right)$ Derived from previous calculation P_{treatment_j} 106,712,480 person/yr = 30.13 kg protein/person/yr Protein = **IPCC** Default 0.16 kg N/kg protein 🔺 **F**_{NPR} = 1.1 kg N/kg N F_{NON-CON} = Default for South and Southeast Asia 1.25 kg N/kg N FIND-COM = N_{HH} 1.1 = **IPCC** Default **Tier 2 Calculation** TN_{DOM_j} 106712479.8*30.13*0.16*1.1*1.1*1.25 kg N/yr = 778,203,405.41 kg N/yr = EQUATION 6.10 (NEW) TOTAL NITROGEN IN DOMESTIC WASTEWATER BY TREATMENT PATHWAY $TN_{DOM_{j}} = \left(P_{treatment_{j}} \bullet Protein \bullet F_{NPR} \bullet N_{HH} \bullet F_{NON-CON} \bullet F_{IND-COM}\right)$ 106,712,480 person/yr P_{treatment_j} = Just an assumed value as 25.11 kg protein/person/yr Protein = country specific value is not 0.2 kg N/kg protein FNPR = Default for available 1.1 kg N/kg N F_{NON-CON} = South and 1.5 kg N/kg N FIND-COM Southeast Asia Default for South and Southeast Asia N_{HH} 1.13 (India) Factor to allow for co-discharge of industrial 106712479.8*30.13*0.16*1.13*1.1*1.5 kg N/yr nitrogen into sewers. For countries with significant 1.25 1.0 - 1.5FIND-COM fish processing plants, this factor may be higher. 999,283,918.31 kg N/yr = Expert judgment is recommended.

Step 04: Estimate emissions from wastewater treatment and sum the results for each treatment pathway/system.

	Parameter	Value	Unit
TN _{DOM}	Total nitrogen in domestic wastewater in inventory year	778,203,405.41	kg N/yr
Ui	Fraction of population in income group i in inventory year	0.06	
T _{ij}	Degree of utilisation of treatment/discharge pathway or system j, for each income group fraction i in inventory year	0.67	
i	Income group: rural, urban high income and urban low income	Urban High Income	
j	Each treatment/discharge pathway or system	Centralised, aerobic treatment plant	
EFj	Emission factor for treatment/discharge pathway or system j, kg N2O-N/kg N	0.016	kg N2O-N/kg N

=

 $\left[\sum (0.000804) + (n) \dots \right] \times 926,608,724.25 \times \frac{44}{28} \text{ kg N}_2\text{O/yr}$

1,262,523.85 kg N₂O/yr

Step 05: Estimate total nitrogen in the wastewater effluent discharged to aquatic environments

	Parameter	Value	Unit
TN _{DOM}	Total nitrogen in domestic wastewater in inventory year	778,203,405.41	kg N/yr
Tj	Degree of utilisation of treatment system j in inventory year	0.07	
j	Each wastewater treatment type used in inventory year	Secondary (biological)	
N _{REM,j}	Fraction of total wastewater nitrogen removed during wastewater treatment per treatment type j	0.4	

Derived from previous equation

From Table 6.5 (India – under Asian region, Urban High income, "Other" treatment or discharge pathway), as country specific values are not available

IPCC default values

TABLE 6.10C (NEW) Wastewater treatment nitrogen removal fractions (N _{REM}) according to treatment type				
Treatment Type Default Range				
No treatment	01-3	01-3		
Primary (mechanical)	0.10 ¹⁻³	$0.05 - 0.20^{1-3}$		
Secondary (biological)	0.401-3	$0.35 - 0.55^{1-3}$		
Tertiary (advanced biological)	0.801-4	$0.45 - 0.85^{1-4}$		
Septic tank	0.15 ¹⁻³	$0.10 - 0.25^{1-3}$		
Septic tank + land dispersal field	0.685	$0.62 - 0.73^5$		
Latrine	0.126	$0.07 - 0.21^{6}$		

Step 06: Estimate emissions from effluent, accounting for losses of nitrogen that occur within the wastewater treatment process including sludge removal and sum the results for each pathway/system.

The factor 44/28 is the conversion of kg N₂O-N into kg N₂O.

	Parameter	Value	Unit
N _{EFFLUENT,DOM} N2O emissions from domestic wastewater effluent in inventory year		32,684,543.03	kg N/yr
EF _{effluent}	Nitrogen in the effluent discharged to aquatic environments	0.005	kg N2O-N/kg N

	Parameter	Value	Unit
Р	Country population in inventory year, (person)	118,569,422	persons
BOD	Country-specific per capita BOD in inventory year, g/person/day	40	g/person/day
I	Correction factor for additional industrial BOD discharged into sewers	1	

EQUATION 6.3 TOTAL ORGANICALLY DEGRADABLE MATERIAL IN DOMESTIC WASTEWATER $TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$					
Ρ	=	118,569,422	persons		
BOD	=	40	g/person/day 👞 Default		
I	=	1			
тоw	=	118569422*40*0.001*1*365	kg BOD/yr		
	=	1,731,113,561.20	kg BOD/yr		

$Table \ 6.4$ Estimated BOD ₅ values in domestic wastewater for selected regions and countries				
Country/Region	BOD ₅ (g/person/day)	Range	Reference	
Africa	37	35-45	1	
Fgynt	34	27-41	1	
Asia, Middle East, Latin America	40	35-45	1	
India	34	27-41	1	
West Bank and Gaza Strip (Palestine)	50	32-68	1	
		10 14		

EQUATION 6.3 TOTAL ORGANICALLY DEGRADABLE MATERIAL IN DOMESTIC WASTEWATER $TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$						
Р	=	118,569,422	persons			
BOD	=	40	g/person/day 👞 Default			
I	=	1				
TOW	=	118569422*40*0.001*1*365	kg BOD/yr			
	=	1,731,113,561.20	kg BOD/yr			

$TABLE \ 6.4$ Estimated BOD ₅ values in domestic wastewater for selected regions and countries					
Country/Region	BOD ₅ (g/person/day)	Range	Reference		
Africa	37	35-45	1		
Fgynt	34	27-41	1		
Asia, Middle East, Latin America	40	35-45	1		
India	34	27-41	1		
West Bank and Gaza Strip (Palestine)	50	32-68	1		
	10	10.10			

Tier 2 Calculation

TOTAL ORG	EQUATION 6.3 TOTAL ORGANICALLY DEGRADABLE MATERIAL IN DOMESTIC WASTEWATER $TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$				
p	=	118.569.422	persons		
BOD	=	42	g/person/day		
l	=	1.25			
TOW	=	118569422*42*0.001*1.25*365	kg BOD/yr		
	=	2,272,086,549.08	kg BOD/yr		

As country's wastewater BOD level is not available, value from the value range need to be used

There are 5 worksheets within the Domestic Wastewater Treatment and Discharge

- 1. CH4 Emissions
- 2. CH4 Emissions from Constructed Wetlands
- 3. Direct N2O Emissions from Treatment Plants
- 4. Indirect N20 Emissions
- 5. Direct N2O Emissions from constructed wetlands

2. CH4 Emissions from constructed wetlands

UN 🙆

UN 🙆

5. Direct N2O Emissions from constructed wetlands

4.D – Wastewater treatment and discharge

• 4.D.2 – Industrial Wastewater Treatment and Discharge

4.D.2 –Industrial Wastewater Treatment and Discharge Emission calculation - CH₄

Step 01: Estimate total organically degradable carbon in wastewater (TOW) for industrial sector i

environment

programme

UN (1) environment

copenhagen

CBIT-GSP

CLIMATE TRANSPARENCY

Tier 1 Calculation

	Parameter	Value	Unit
i	Industrial sector	Meat & Poultry	,
Pi	Total industrial product for industrial sector i	1000	t/yr
Wi	Wastewater generated	13	m3/t product
CODi	Chemical oxygen demand (industrial degradable organic component in wastewater),	4.1	kg COD/m3

	O	EQUATION 6.6 GANICALLY DEGRADABLE MATERIAL IN INDUSTRIAL WASTEWATER $TOW_i = P_i \bullet W_i \bullet COD_i$
i	_	Meat & Poultry
Pi	=	1000 t/yr
Wi CODi	=	13 m3/t product 4.1 kg COD/m3 IPCC Default values
TOWi	=	1000* 13* 4.1
	=	53300 kg COD/yr

Table 6.9 Examples of industrial wastewater data					
Industry Type	Wastewater Generation W (m ³ /ton)	Range for W (m ³ /ton)	COD (kg/m ³)	COD Range (kg/m ³)	
Alcohol Refining	24	16 - 32	11	5 - 22	
Beer & Malt	6.3	5.0 - 9.0	2.9	2 - 7	
Coffee	NA	NA –	9	3 - 15	
Dairy Products	7	3 - 10	2.7	1.5 - 5.2	
Fish Processing	NA	8 - 18	2.5		
Meat & Poultry	13	8 - 18	4.1	2 - 7	

Tier 1 Calculation

Table 6.9 Examples of industrial wastewater data					
Industry Type	Wastewater Generation W (m ³ /ton)	Range for W (m ³ /ton)	COD (kg/m ³)	COD Range (kg/m ³)	
Alcohol Refining	24	16 - 32	11	5 - 22	
Beer & Malt	6.3	5.0 - 9.0	2.9	2 - 7	
Coffee	NA	NA –	9	3 - 15	
Dairy Products	7	3 - 10	2.7	1.5 - 5.2	
Fish Processing	NA	8 - 18	2.5		
Meat & Poultry	13	8 - 18	4.1	2 - 7	

copenhagen climate centre

Tier 2 Calculation

EQUATION 6.6 ORGANICALLY DEGRADABLE MATERIAL IN INDUSTRIAL WASTEWATER $TOW_i = P_i \bullet W_i \bullet COD_i$								
i	=	Meat & Po	oultry					
Pi	=	1000	t/yr					
Wi	=	10	m3/t produ	ct				
CODi	=	2	kg COD/m3					
тоwi	=	1000* 10*	2					
	=	20000	kg COD/yr					

10 m3/ t product is just an example used here as country specific value could not find

Indicative Values of Wastewater Quality in Selected Industries in the Philippines*

Industry	BOD (mg/L)	COD(mg/L)	TSS(mg/L)	Temp(deg C)	pН
Sugarcane milling	2,000-3,500	6,000	800 - 1,000	-	6.5 - 8.0
Manufacture of ethanol	60,000	110,000	6,000	48-50	4 - 4.5
Canning of fish products	30,000	45,000	10,700	25	6.5 -7.5
Manufacture of beverages	900	1,500	250	25	11 - 12
Meat processing	1,000 - 1,500	2,000	250	-	7

Source: Situation of Industrial Wastewater Regulation in the Philippines, (DENR), 2020

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

CBIT-GSP CLIMATE TRANSPARENCY

Step 02: Select the pathway and systems according to country activity data.

Updated figure in the 2019 refinement

4.D.2 –Industrial Wastewater Treatment and Climate Transparency Discharge CONT...

Step 03: For each industrial sector estimate the emission factor using maximum methane producing capacity and the average industry-specific methane correction factor (Country specific **OR** use IPCC default values)

environment

programme

environment

programme

copenhagen

climate centre

	Parameter	Value	Unit
B ₀	Maximum CH4 producing capacity	0.25	kg CH4/kg COD
		Aerobic treatment plant,	
j	Each treatment/discharge pathway or system	Not well managed	
		overloaded	
MCFj	Methane correction factor (fraction)	0.3	

		EQUATION 6.5 CH ₄ EMISSION FACTOR FOR INDUSTRIAL WASTEWATER $EF_j = B_o \bullet MCF_j$
B ₀	=	0.25 kg CH4/kg COD IPCC Default values
j	=	Aerobic treatment plant, Not well managed overloaded
MCFj	=	0.3
EFj	=	0.25*0.3
	=	0.075 kg CH4/kg COD

DEFA	TABLE 6.8 ULT MCF VALUES FOR INDUSTRIAL WASTEWATER		
Type of treatment and discharge pathway or system	Comments	MCF ¹	Range
Untreated			
Sea, river and lake discharge	Rivers with high organics loadings may turn anaerobic, however this is not considered here.	0.1	0 - 0.2
Treated			
Aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets.	0	0 - 0.1
Aerobic treatment plant	Not well managed. Overloaded	0.3	0.2 - 0.4
Anaerobic digester for sludge	CH ₄ recovery not considered here	0.8	0.8 - 1.0
Anaerobic reactor (e.g., UASB, Fixed Film Reactor)	CH ₄ recovery not considered here	0.8	0.8 - 1.0
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment	0.2	0 - 0.3
Angeropic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0

Tier 1 Calculation

environment programme

copenhagen climate centre

		EQUATION 6.5 CH ₄ EMISSION FACTOR FOR INDUSTRIAL WASTEWATER $EF_j = B_o \bullet MCF_j$
B ₀	=	0.25 kg CH4/kg COD IPCC Default values
j	=	Aerobic treatment plant, Not well managed overloaded
MCFj	=	0.3
EFj	=	0.25*0.3
	=	0.075 kg CH4/kg COD

DEFAI	Table 6.8 Default MCF values for industrial wastewater				
Type of treatment and discharge pathway or system	Comments	MCF ¹	Range		
Untreated					
Sea, river and lake discharge	Rivers with high organics loadings may turn anaerobic, however this is not considered here.	0.1	0 - 0.2		
Treated					
Aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets	0	0 - 0.1		
Aerobic treatment plant	Not well managed. Overloaded	0.3	0.2 - 0.4		
Anaerobic digester for sludge	CH ₄ recovery not considered here	0.8	0.8 - 1.0		
Anaerobic reactor (e.g., UASB, Fixed Film Reactor)	CH ₄ recovery not considered here	0.8	0.8 - 1.0		
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment	0.2	0 - 0.3		
Anaerobic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0		
¹ Based on expert judgment by lead authors	of this section				

Tier 2 Calculation

		EQUATION 6.5 CH ₄ EMISSION FACTOR FOR INDUSTRIAL WASTEWATER $EF_j = B_o \bullet MCF_j$
B ₀	=	0.4 kg CH4/kg COD ◀
j	=	Aerobic treatment plant, Not well managed overloaded
MCFj	=	0.25
EFj	=	0.4*0.25
	=	0.1 kg CH4/kg COD

Just examples used here as country specific values are not available

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

Step 04: Estimate emissions, adjust for possible sludge removal and or CH4 recovery and sum the results

The general equation to estimate CH₄ emissions from industrial wastewater is as follows:

	Parameter	Value	Unit
i	Industrial sector	Meat & Poultry	,
TOWi	Total organically degradable material in wastewater from industry i in inventory year	53300	kg COD/yr
Si	Organic component removed as sludge in inventory year	100	kg COD/yr
EFi	Emission factor for industry i	0.075	kg CH4/kg COD
Ri	Amount of CH4 recovered in inventory year	0	kg CH4/yr

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

Emission calculation N_2O

Step 01: Estimate total nitrogen in wastewater entering treatment

Industrial production data and wastewater generation rates may be obtained from national statistics, regulatory agencies, wastewater treatment associations or industry associations.

There should be industry, process, and country specific values

P From IPCC 2019 Refinement Value of the industrial sectors that generate wastewater with large quantities of N, by evaluating total industrial product, N in the

wastewater, and wastewater produced

Philippines - Total production of meat

2,907,638

(tonnes) in 2022

Source: World data atlas

IPCC Default values

TABLE 6.12 (NEW) Examples of industrial wastewater data								
Industry Type	Wastewater Generation W (m ³ /tonne)	Range for W (m ³ /tonne)	Total Nitrogen (TN) (kg/m ³)	TN Range (kg/m ³)				
Alcohol refining	24 ²	$16 - 32^2$	2.4 ²	$0.94 - 3.86^2$				
Beer & malt	6.3 ²	$5.0 - 9.0^2$	0.055 ³	$0.025 - 0.08^3$				
Fish processing	5 ²	$2 - 8^2$	0.60 ²	$0.21 - 0.98^2$				
Iron and steel manufacturing	51	$0.004 - 10.4^4$	0.25 ¹	$0.0004 - 0.524^4$				
Meat & poultry	13 ²	$8 - 18^{2}$	0.192	$0.17 - 0.20^2$				

EQUATION 6.13 (NEW) TOTAL NITROGEN IN INDUSTRIAL WASTEWATER $TN_{IND_i} = P_i \bullet W_i \bullet TN_i$							
i	=	Meet & Poultry					
Pi	=	2,907,638	t/yr 🔶				
Wi	=	13	m3/tonne				
TNi	=	0.19	kg/m3	\mathcal{A}			
TN _{INDi}	=	2907638*13*0.19	kg TN/yr				
		7,181,866	kg TN/yr				

Tier 1 Calculation

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

Step 02: Select the pathway and systems according to country activity data.

CBIT-GSP

CLIMATE TRANSPARENCY

UN 🏵

environment

programme

UNG

environment

programme

copenhagen climate centre

Updated figure in the 2019 refinement

4.D.2 – Industrial Wastewater Treatment and Discharge CONT...

Step 03: Choice of method for each industrial wastewater treatment/ discharge pathway or system

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

Step 04: Estimate the emissions from wastewater treatment and sum the results for each pathway/system

Tier 1 Calculation

4.D.2 – Industrial Wastewater Treatment and Discharge CONT...

Step 05: Estimate the total nitrogen in the industrial wastewater effluent

Tier 1 Calculation

4.D.2 –Industrial Wastewater Treatment and Discharge CONT...

Step 06: Estimate emissions from effluent, accounting for losses of nitrogen that occur within the wastewater treatment process, including sludge removal, and sum the results for each pathway/system.

Tire 1 Calculation

ge

environment programme climate centre

There are 6 worksheets within the Industrial wastewater treatment and discharge

1. CH4 Emissions

- 2. CH4 Emissions from Constructed Wetlands
- 3. Direct N2O Emissions from constructed wetlands
- 4. N in wastewater
- 5. Direct N2O Emissions from treatment plants
- 6. N2O emissions from effluent wastewater

			_		-	Equat	tion 6.4, 6.6							-		
Subdivision (Region, city, etc.)	Industry sector	Total industry product (t/yr)	Wastewate r generated (m3/t)	Chemical Oxygen Demand (kg COD/m3)	Total or degradable i wastewater industry (kg COI	ganic material in for each sector D/yr)	Sludge removed in each industry sector (kg COD/yr	Weighted (kg Ci	Emission Fa H4/kg COD)	actor	Methane (kg	recovered CH4)	CH4 Emissions (kg CH4)	CH4 Emissions (Gg CH4)		
۵۷	i V	Pi	wi	CODi		TOWi = Pi *Wi * CODi or specified	Si		WEFi		Flaring Fi	Energy use Ri	Ei = (TOWi - Si) * WEFi - Fi - Ri	Ei / 1000000		
4															2	
otal						0	1				0	0	0	0		
						0					U	0	0	0		

Worksheet 1: CH₄ Emissions

copenhagen climate centre

2. CH4 Emissions from Constructed Wetlands

3. Direct N2O Emissions from constructed wetlands

5. Direct N2O Emissions from treatment plants

Select from the dropdown

6. N2O emissions from effluent wastewater

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com

environment programme

UN 🎯 environment copenhagen climate centre programme

Let's do an exercise with the IPCC GHGI tool!

environment programme progra

t copenhage

Activity 01

Step 01: Open the worksheets for 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 02: In the first worksheet, CH4 Emissions, enter the following data accordingly

Input parameter	Entry	Note
Subdivision	Philippine	
WEF	0.5	
Population	2000000	
BOD	40	Use the default value
Ι	0.85	
S	0	
Flaring F	0	
Energy use	0	

*the activity data used in this activity are not real. Just examples only for this activity.

environment programme

t copenhager climate cen

Activity 02

Step 01: Open the worksheets for 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 02: In the second worksheet, CH4 Emissions from constructed wetlands, enter the following data

accordingly

Input parameter	Entry	Note
Subdivision	Facility 01	
Type of constructed wetlands	Horizontal subsurface flow	
Population served by cwj (capita)	2000	
Degradable Organic Component (g/cap/day)	40 (g/cap/day)	Used the default value
Correction factor for industrial BOD discharged in sewers	1.25	
Maximum methane producing capacity	10 (kg/BOD/Yr)	
Methane correction factor	0.2	
Emission Factor	2	
*the activity data used in this activity are not real. Just examples	only for this activity.	

Activity 03

Step 01: Open the worksheets for 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 02: In the third worksheet, direct N2O emissions from treatment plants, enter the following data accordingly

Input parameter	Entry	Note
Subdivision	Facility 01	
Population	20000	
Degree of utilization of modern, centralized wastewater treatment plants (%)	10	
Fraction of industrial and commercial co- discharged protein	1.25	
Emission Factor (EF plant)	0.0032 (kg N2O/person/Yr)	

**the activity data used in this activity are not real. Just examples only for this activity.*

IN 🌀

Activity 04

Step 01: Open the worksheets for 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 02: In the fourth worksheet, indirect N2O emissions, enter the following data accordingly

Input parameter	Entry	Note
Subdivision	Facility 01	
Population	1000000	
Per capita protein consumption	20	
Fraction of nitrogen in protein	0.16	Default value
Fraction of non-consumption protein	1.1	Default value
Fraction of industrial and commercial co-discharged protein	1.25	Default value
Nitrogen from wastewater plants	5.09091	
Emission factor	0.005	
*the activity data used in this activity are not real. Just example	s onlv for this activity.	
Exercise for Domestic Wastewater Treatment and Discharge

nent copenhage

Activity 05

Step 01: Open the worksheets for 4.D.1 – Domestic Wastewater Treatment and Discharge

Step 02: In the fifth worksheet, direct N2O emissions from constructed wetlands, enter the following data

Input parameter	Entry	Note
Subdivision	Facility 01	
Type of constructed wetland	Horizontal Surface flow	
Population	4000	
Per capita protein consumption	5	
Fraction of nitrogen in protein	0.16	Default value
Fraction of non-consumption protein	1.4	Default value
Fraction of industrial and commercial co-discharged protein	1.25	Default value
Nitrogen removed with sludge	1	
Emission factor	0.0079	

*the activity data used in this activity are not real. Just examples only for this activity.

environment programme

t copenhagen climate centre

Activity 01

CH4 Emissions

Data																	
							Equatio	on 6.1,	6.3								
Subdivision (Region, city, etc.)	Weighted (kg C	Emission Fa H4/kg BOD)	ctor	Population (Capita)	Degradable organic component (g/cap/day)	Correction BOD discl	factor for ind harged in sev	ustrial wers	Organically material in (kg B(degradable wastewater DD/yr)	Sludge removed (kg BOD/yr)	Methane r (kg (recovered CH4)	CH4 Emissions (kg CH4)	CH4 Emissions (Gg CH4)		
۵Ţ		WEF		P	BOD		1			TOW = P * BOD * 0.001 * I * 365 or specified	s	Flaring F	Energy use R	E = WEF * (TOW - S) - F - R	E / 1000000		
M Philippine-Urban	Specified	0.5		20000000	40	Specified	0.85		Calculated	2482000	0	0	0	124100000	124.1	2	2 🗙
*			2					2								2	
Total																	
										248200000		0	0	124100000	124.1		

Activity 02

CH4 Emissions from constructed wetlands

Data															
					Equation	6.1, 6.2, 6.3 WS									
Subdivision	Type of Constructed Wetlands	Population served by CWj (Capita)	Degradable organic component (g/cap/day)	Correction factor for industrial BOD discharged in sewers	Total Organi Material tre (kg Bl	c Degradable ated in CWj OD/yr)	Maximum methane producing capacity (kg CH4 / kg BOD)	Methane Correction Factor (Fraction)	Emissio (kg CH4 /	n Factor /kg BOD)	CH4 Emissions (kg CH4)	CH4 Emissions (Gg CH4)			
۵V	j ∆⊽	Pj	BOD	-		TOWj = Pj * BOD * 0.001 * I * 365 or specified	Во	MCFj		EFj = Bo * MCFj or specified	E = TOWj * EFj	E / 1000000			
M Facility 01	Horizontal Subsu	2000	40	1.25	Calculated	36500	10	0.2	Calculated	2	73000	0.073	2	a) 🤊	
*													2		
Total															
						36500					73000	0.073			

Activity 03

Direct N2O emissions from treatment plants

Data									
			Equatio	on 6.9					
Subdivision (Region, city, etc.)	Population (P) (people)	Degree of utilization of modern, centralized wastewater treatment plants (Tplant) (%)	Fraction of industrial and commercial co- discharged protein (Find-com) (-)	Emission Factor (EFplant) (kg N2O/person/Year)	N2O Emissions (kg N2O/yr)	N2O Emissions (Gg N2O/yr)			
ΔΥ	А	В	С	D	E = A * B * C * D	F = E / 10^6			
1 facility 01	20000	10	1.25	0.0032	8	0.00001		?	X
*									
Total									
					8	0.00001			

copenhagen climate centre

Activity 04

Indirect N2O emissions

Data													
					Equati	on 6.7, 6.8							
Subdivision (Region, city, etc.)	Populatio n (P) (people)	Per capita protein consumption (Protein) (kg/person/Y ear)	Fraction of nitrogen in protein (Fnpr) (kg N/kg Protein)	Fraction of non- consumption protein (Fnon-con) (-)	Fraction of industrial and commercial co- discharged protein (Find-com)	Nitrogen removed with sludge (Nsludge) (kg)	Total nitrogen in effluent (Neffluent) (kg N/yr)	Nitrogen from Wastewater plants (kg N/yr)	Emission Factor (kg N2O-N/kg N)	N2O Emissions (kg N2O/yr)	N2O Emissions (Gg N2O/yr)		
Δ 7	A	в	с	D	E	F	G = (A*B*C*D*E)- F)	н	I	J = (G - H) * I * 44/28	K = J / 10^6		
🃝 Facility 01 🗸 🗸	100000	20	0.16	1.1	1.25	0	44000000		0.005	345714.285	0.34571	2) X
*												2	
Total								-					
							44000000			345714.285	0.34571		

Activity 05

Direct N2O emissions from constructed wetlands

Data														
					Equation 6.5	WS, 6.6 WS								
Subdivision (Region, city, etc.)	Type of Constructed Wetlands	Populatio n (P) (people)	Per capita protein consumption (Protein) (kg/person/Y ear)	Fraction of nitrogen in protein (Fnpr) (kg N/kg Protein)	Fraction of non- consumption protein (Fnon-con) (-)	Fraction of industrial and commercial co- discharged protein (Find-com)	Nitrogen removed with sludge (Nsludge) (kg)	Total nitrogen in effluent (Neffluent) (kg N/yr)	Emission Factor (kg N2O- N/kg N)	N2O Emissions (kg N2O/yr)	N2O Emissions (Gg N2O/yr)			
۵V	V	A	В	с	D	E	F	G = (A*B*C*D*E)- F)	н	I = G * H * 44/28	J = I / 10^6			
M facility 01	Horizontal Subsurf	40000	5	0.16	1.4	1.25	1	55999	0.0079	695.18759	0.0007	2	2 🗙	D
*												2		
Total														
								55999		695.18759	0.0007			

Exercise

Let's do an exercise with the inventory tool!

Exercise

Step 01: Open the Worksheet 1: CH4 Emissions.

Step 02: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Sub A	
ndustry sector	Meat & Poultry	
Total industry product (t/yr)	5000	
Wastewater generated (m3/t)	13	Default
COD (kg COD/m3)	4.1	Default
Sludge removed (kg COD/yr)	12	
Neighted EF	0.25	Default
Methane recovered (Flaring)	0	According to IPCC, consider as
Methane recovered (Energy use)	0	"zero" due to unavailability of data

**the activity data used in this activity are not real. Just examples only for this activity.*

Step 03: Save entered data

CBIT-GSP CLIMATE TRANSPARENCY environment programme

environment programme climate centr

Exercise CONT...

Step 04: Open the Worksheet 2: CH4 Emissions from constructed wetlands

Step 05: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Con. Wetland 1	
Type of constructed wetland	Surface flow	
Industry sector	Dairy Products	
COD (kg COD/ m3)	2.7	Default
Daily flow rate of industrial WW (m3/day)	500	
Total organic degradable	Select "calculated"	
Maximum methane producing capacity	0.25	Default
Methane correction factor	0.4	Default
Emission factor	Select "calculated"	

**the activity data used in this activity are not real. Just examples only for this activity.*

Step 06: Save entered data

CBIT-GSP

CLIMATE TRANSPARENCY

nt copenhagen climate cent

Exercise CONT...

environment

ment copenhage

Step 07: Open the Worksheet 3: Direct N₂O Emissions from constructed wetlands

Step 08: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Con. Wetland 1	
Type of constructed wetland	Surface flow	
Industry sector	Beer & Meet	
COD (kg COD/ m3)	0.055	Default
Yearly flow rate of industrial WW (m3/day)	Select "calculated"	
Total industry product	1000	
Wastewater generated (m3/t)	6.3	Default
N removed with sludge	0	Default
Emission factor	0.0013	Default

**the activity data used in this activity are not real. Just examples only for this activity.*

Step 09: Save entered data

Exercise CONT...

Step 10: Open the Worksheet 4: N in wastewater Step 11: Enter following data accordingly

climate cent

Input parameter	Entry	Note
Subdivision	Sub A	
Industry sector	Beer & Meet	
Total N in wastewater from industry (kg N/yr)	Select "calculated"	
Total industry product	1500	
Wastewater generated (m3/t)	6.3	Default
Total N concentration in wastewater (kg/m3)	0.055	Default
Type of treatment or discharge pathway or system	Centralised aerobic treatment plant	
Degree of utilisation	0.07	

the activity data used in this activity are not real. Just examples only for this activity.* **Step 12: Save entered data

CBIT-GSP

CLIMATE TRANSPARENCY

UN 🎯

environment

programme

gef

UN 🎯

environment

programme

copenhagen climate centre

Results of Worksheet 2: CH4 Emissions from constructed wetlands

CH4 Emissions	CH4 Em	issions from Co	onstruc	ted Wetlands Direc	t N2O Emissio	ns from Constr	ucted Wetlands	N in Waster	vater Direct	N2O Emission	s from Treatme	ent Plants N	20 Emissions fr	om Effluent wa	stewa	ater	
Vorksheet Sector: Category: Subcategory: Sheet: Data	Waste Wastev 4.D.2 - CH4 Er	vater Treatment Industrial Waste nissions from Inc	and D ewater lustrial	ischarge Treatment and Discharg Wastewater in Construc	je ted Wetlands											20	10
							Equation	6.1, 6.2, 6.4 W	S								
Subdivisi	on	Type of Construct Wetland	ed S	Industry sector	Chemical Oxygen Demand (kg COD/m3)	Daily flow rate of industrial wastewater (m3/day)	Total Organio Material fro treated (kg C0	c Degradable m industry i in CWj DD/yr)	Maximum methane producing capacity (kg CH4/kg COD)	Methane Correction Factor (Fraction)	Emissio (kg CH4	n Factor /kg COD)	CH4 Emissions (kg CH4)	CH4 Emissions (Gg CH4)			
	۵v	j	۵Ţ	i AV	CODi	Wij		TOWi,j = CODi * Wi,j * 365 or specified	Во	MCFj		EFj = Bo * MCFj or specified	Ej = TOWi.j * EFj	Ej / 1000000			
Con. Wetlan	nd 1	Surface Flow	~	Dairy Products	2.7	500	Calculated	492750	0.25	0.4	Calculated	0.1	49275	0.04928	2		X
*															2		
Total								402750					40075	0.04000			
-								432/50					45275	0.04328			

Results of Worksheet 3: Direct N20 Emissions from constructed wetlands

CH4 Emissions	Emissions CH4 Emissions from Constructed Wetlands Direct N2O Emissions from Constructed Wetlands N in Wastewater Direct N2O Emissions from Treatment Plants N2O Emissions from Effluent wastewater														
Worksheet Sector: Category: Subcategory: Sheet: Data	ctor: Waste 2010 tegory: Wastewater Treatment and Discharge 2010 bcategory: 4.D.2 - Industrial Wastewater Treatment and Discharge 2010 eet: Direct N20 Emissions from Industrial Wastewater Treated in Constructed Wetlands 2010 ta Equation 6.5 WS, 6.7 WS 2010														
						Equation 6.	5 WS, 6.7 WS								
Subdivisi	Equation 6.5 WS, 6.7 WS Equation 6.5 WS, 6.7 WS Subdivision Type of Constructed Wetlands Industry sector Total undustrial wastewater i treated by constructed wetlands j (kg N/m3) Yearly flow rate of industrial wastewater treated by constructed wetlands j (m3/yr) Nitrogen removed with sludge (kg N) Total nitrogen in effluent (kg N/yr) Emission Factor (kg N/2O- N/kg N) N2O Emissions (kg N2O) N2O Emissions (kg N2O)														
	۵⊽	j ∆⊽	i ∆7	TNij		Total industry product i (t/yr) Pij	Wastewater generated (m3/t) WWij	Wij = Pij * WWij or specified	s	Nij = TNij * Wij - S	EFj	E = Nij * EFj * 44/28	E / 10^6		
Con. Wetlar	nd 1	Surface Flow	Beer & Malt	0.055	Calculated	1000	6.3	6300	0	346.5	0.0013	0.70785	0	2	🄊 🗙
*														2	
Total															
										346.5		0.70785	0		

Results of Worksheet 4: N in wastewater

CH4 Emissions Worksheet Sector: Category: Subcategory: Sheet: Data		CH4 Emissions from Constructed Wetlands Direct N2O Emissions from Constructed Wetlands N in Wastewater Waste Wastewater Treatment and Discharge 4.D.2 - Industrial Wastewater Treatment and Discharge N in Wastewater									vastewater 2010		
		Equation 6.11 (NEW), 6.13 (NEW)											
	s	Subdivision	Industry sector	Total N in wastewater from industry (kg N/yr) TNind(i)									
		۵Ţ	j ∆⊽		Total industry product (t/yr) Pi	Wastewater generated (m3/t) Wi	Total N concentration in wastewater (kg/m3) TNi	TNind(i) = Pi * Wi * TNi or specified					
	Sub A		Beer & Malt	Calculated	150	0 (6.3 0.055	519.75			2	X	
	*												
	Total							519.75					