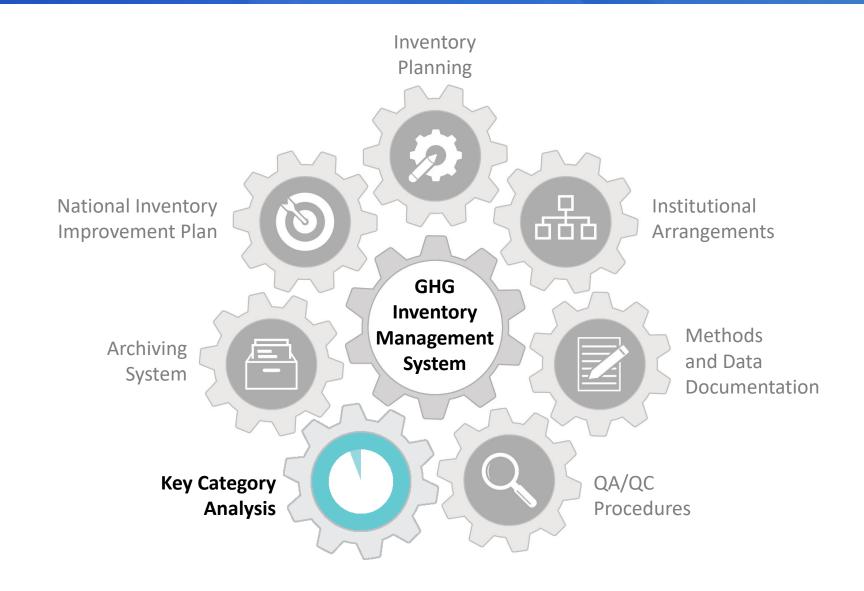


Key Category Analysis

Training on the Building of Sustainable National Greenhouse Gas Inventory


Management Systems

Mausami Desai

U.S. Environmental Protection Agency April/May 2024

Key Category Analysis

Poll Question #3

Which tools did you use to conduct the key category analysis?

- a) Spreadsheet (developed by the GHG inventory compilation team)
- b) IPCC Inventory Software
- c) Other

Describe other tools here or using the chat!

Respond using Mentimeter link in the chat!

3

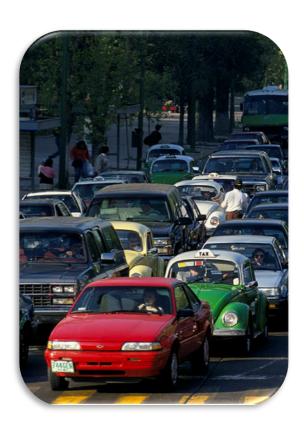
Overview

Gg CO2 eq.	Cumulative %
og coz eq.	of Emissions
300	31%
190	51%
110	62%
100	73%
90	82%
80	
50	91%
30	95%
6	99%
	99%
4	
_1	99.9%
	100%

Introduction to Key Category Analysis

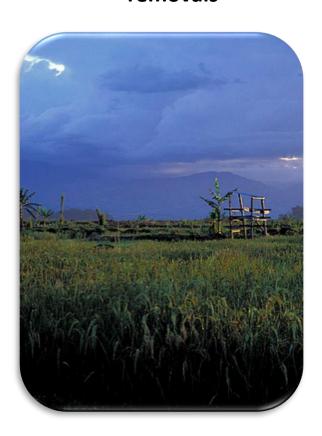
Review of the Template & Tools

What is a Key Category?

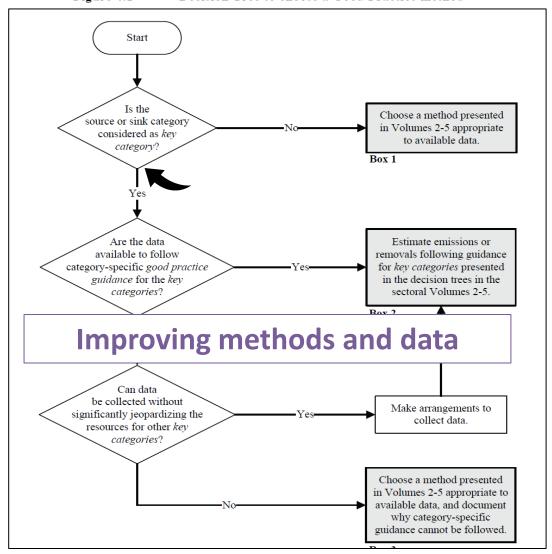

A <u>category</u> that is prioritized within the national inventory system because its <u>estimate</u> has a <u>significant influence</u> on a country's <u>total inventory</u> of greenhouse gases in terms of the <u>absolute level</u>, the trend, or the uncertainty in emissions and removals.

2006 IPCC Volume 1, Chapter 4

Example Key Source and Sink Categories


Absolute level contribution to total emissions

Trend: High growth rate in emissions


Uncertainty in emissions or removals



Prioritizing Key Categories in National GHG Inventories

Figure 4.1 Decision Tree to choose a Good Practice method

How to Identify Key Categories

Quantitative Approaches

Qualitative Approaches

How to Identify Key Categories

Quantitative Approaches

Use emission and sink
 estimates and uncertainty
 analysis results to analyze
 actual category contribution
 to both overall emissions and
 sinks and uncertainty.

Qualitative Approaches

How to Identify Key Categories

Quantitative Approaches

Use emission and sink
 estimates and uncertainty
 analysis results to analyze
 actual category contribution
 to both overall emissions and
 sinks and uncertainty.

Qualitative Approaches

- Completeness: If there are known categories that are excluded from the inventory, consider qualitive criteria to identify any additional key categories.
- Other qualitative criteria include expected growth, lack of quantified uncertainty assessment, and mitigation effects

Quantitative Assessment for Identifying Key Categories

- ✓ Approach 1 sorts and ranks source and sink categories according to their absolute contribution to total emissions and removals and identifies categories that collectively contribute 95% of total national emissions and removals
 - ✓ A "level assessment" looks at a particular year
 - ✓ A "trend assessment" looks at the category trend relative to national trend in emissions and removals
- ✓ Approach 2 is similar, but sorts and ranks category estimates according to their absolute contribution weighted by uncertainty, and identifies categories that collectively contribute 90% of uncertainty weighted total national emissions and removals

Note: If using the IPCC Inventory Software, quantitative KCA is performed automatically by the software as data is entered – no need to process separately. Future reporting tools will also automate implementation of Approach 1 for identifying key categories.

Before you get started:

- 1. Identify roles Decide who will conduct the KCA (e.g., National Inventory Coordinator).
- 2. Organize your inventory estimates in at disaggregation levels consistent with IPCC guidance: estimates are organized by the categories, subcategories where applicable, and gases as outlined in the 2006 IPCC Guidelines, Volume 1, Chapter 4, Table 4.1.
 - → Perform analysis including and excluding LULUCF sector

Step 1) List all inventory categories for year of level analysis (e.g., latest reported year)

Emission Category	Gas	Gg CO₂ eq.

Step 1) List all inventory categories for year of level analysis (e.g., latest reported year)

Emission Category	Gas	Gg CO₂ eq.
Energy Industries (solid fuel)	CO ₂	300
Road Transportation	CO ₂	110
Iron and Steel Production	CO ₂	90
Iron and Steel Production	CH ₄	1
Forest Land Remaining Forest Land	CO ₂	-190
Croplands Remaining Croplands	CO ₂	6
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4
Enteric Fermentation	CH ₄	100
Manure Management	N ₂ O	80
Cement Production	CO ₂	30
Rice Cultivation	CH ₄	50

Important good practice: The analysis should be performed at appropriate level of aggregation (i.e., at level at which you estimate IPCC categories or subcategories, per methods and decision trees).

A	В	С	D	E	F	G
IPCC Category code	IPCC Category	Greenhouse gas	1994 Ex,t (Gg CO2 Eq)	Ex,t (Gg CO2 Eq)	Lx,t	Cumulative Total of Column F
2.G	Other Product Manufacture and Use	SF6, PFCs	753201.6125	753201.6125	0.7526	0.7526
2.F.6	Other Applications (please specify)	HFCs, PFCs	70736	70736	0.07068	0.82328
1.A.1	Energy Industries - Solid Fuels	CARBON DIOXID_	29743.85	29743.85	0.02972	0.853
2.F.5	Solvents	HFCs, PFCs	27420	27420	0.0274	0.8804
1.B.2.a	Oil	NITROUS OXIDE_	26988.6	26988.6	0.02697	0.90737
3.D.1	Harvested Wood Products	CARBON DIOXID_	-22505.91952	22505.91952	0.02249	0.92986
2.E	Electronics Industry	SF6, PFCs, HFCs_	20600.3124	20600.3124	0.02058	0.95044
1.A3.b	Road Transportation	CARBON DIOXID	13448.0555	13448.0555	0.01344	0.96388
4.C	Incineration and Open Burning of Waste	CARBON DIOXID	7704.54027	7704.54027	0.0077	0.97158
4.A	Solid Waste Disposal	METHANE (CH4)	3705.3582	3705.3582	0.0037	0.97528
1.A.2	Manufacturing Industries and Construction	CARBON DIOXID	3516.442	3516.442	0.00351	0.97879
1.A1	Energy Industries - Liquid Fuels	CARBON DIOXID	3387.944	3387.944	0.00339	0.98218
2.G	Other Product Manufacture and Use	NITROUS OXIDE (_	3349.9096	3349.9096	0.00335	0.98552
2.D	Non-Energy Products from Fuels and Solv	CARBON DIOXID	3342.603	3342,603	0.00334	0.98886

Step 2) Sort in descending order by contribution to total emissions (absolute values)

Emission Category	Gas	Gg CO₂ eq.
Energy Industries (solid fuel)	CO ₂	300
Forest Land Remaining Forest Land	CO ₂	-190
Road Transport	CO ₂	110
Enteric Fermentation	CH ₄	100
Iron and Steel Production	CO ₂	90
Manure Management	N ₂ O	80
Rice Cultivation	CH₄	50
Cement Production	CO ₂	30
Croplands Remaining Croplands	CO ₂	6
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4
Iron and Steel Production	CH ₄	1

Step 2) Sort in descending order by contribution to total emissions (absolute values)

Emission Category	Gas	Gg CO₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO_2	300	
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO_2	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO_2	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH_4	50	
Cement Production	CO_2	30	
Croplands Remaining Croplands	CO_2	6	
Product Uses as ODS Substitutes	HFC&PFC		
(Aerosols)	TH COLL C	4	
Iron and Steel Production	CH_4	1	

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄	1	

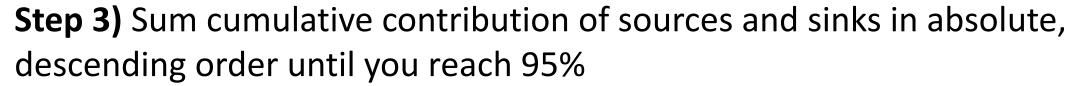
Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	
Forest Land Remaining Forest Land	CO_2	190	
Road Transport	CO_2	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO_2	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄ _	1	
	-	ΤΟΤΔΙ · 961	

OTAL: 961

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	= 300/961 × 100%
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄	1	


TOTAL: 961

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄	1	

TOTAL: 961

Emission Category	Gas	Gg CO₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO_2	300	31%
Forest Land Remaining Forest Land	CO ₂	190	= [(190/961)*100] + 31%
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH_4	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄	OTAL: 961	

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	51%
Road Transport	CO ₂	110	62%
Enteric Fermentation	CH ₄	100	73%
Iron and Steel Production	CO ₂	90	82%
Manure Management	N ₂ O	80	91%
Rice Cultivation	CH ₄	50	96%
Cement Production	CO ₂	30	99%
Croplands Remaining Croplands	CO ₂	6	99%
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	99.9%
Iron and Steel Production	CH ₄ _	1	100%
		TOTAL: 961	

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

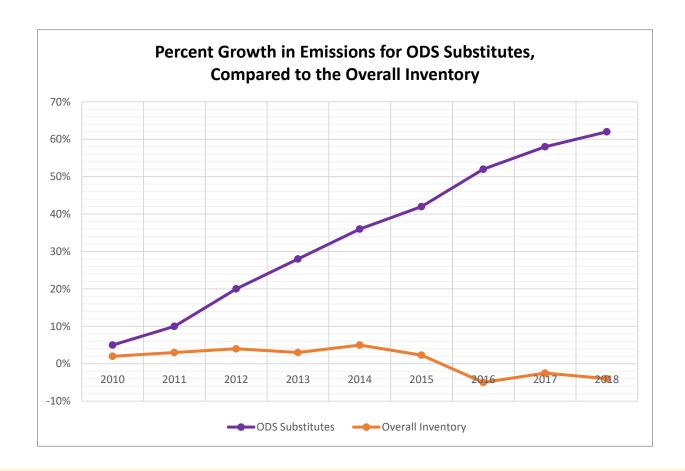
Emission Category	Gas	Gg CO₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	51%
Road Transport	CO ₂	110	62%
Enteric Fermentation	CH₄	100	73%
Iron and Steel Production	CO ₂	90	82%
Manure Management	N ₂ O	80	91%
Rice Cultivation	CH₄	50	96%
Cement Production	CO ₂	30	99%
Croplands Remaining Croplands	CO ₂	6	99%
Product Uses as ODS Substitutes	HFC&PFC		
(Aerosols)	Inflatfu	4	99.9%
Iron and Steel Production	CH ₄	1	100%

Sum to 95%

These are key categories identified by the approach 1 level assessment (including LULUCF) for the latest reported year

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %	
Energy Industries (solid fuel)	CO ₂	300	31%	
Forest Land Remaining Forest Land	CO ₂	190	51%	
Road Transport	CO ₂	110	62%	Sum to 95
Enteric Fermentation	CH ₄	100	73%	
Iron and Steel Production	CO ₂	90	82%	
Manure Management	N ₂ O	80	91%	
Rice Cultivation	$CH_{\mathtt{4}}$	50	96%	
Cement Production	CO ₂	30	99%	
Croplands Remaining Croplands	CO ₂	6	99%	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	99.9%	
Iron and Steel Production	CH ₄	1	100%	


Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	51%
Road Transport	CO ₂	110	62%
Enteric Fermentation	CH₄	100	73%
Iron and Steel Production	CO ₂	90	82%
Manure Management	N ₂ O	80	91%
Rice Cultivation	CH ₄	50	96%
Cement Production	CO ₂	30	99%
Croplands Remaining Croplands	CO ₂	6	99%
Product Uses as ODS Substitutes	HFC&PFC		
(Aerosols)	ΠΓΟΩΡΓΟ	4	99.9%
Iron and Steel Production	CH ₄	1	100%

ETF reporting guidelines provide flexibility for developing countries, in light of their capacities, to instead use a threshold of no lower than 85% to allow focus on improving fewer categories

Quantitative Assessment: Trend Assessment

A trend assessment looks at a category's relative changes in emissions over time, instead of the contribution of a category to the total emission estimates for a country in a particular year (2006 IPCC GL).

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO₂ eq.		Per 2006 IPC	
Energy Industries (solid fuel)	CO ₂	200	300	=	calculated as difference be	
Forest Land Remaining Forest Land	CO ₂	-210	-190		trend of each	
Road Transport	CO_2	60	110		(the change	J ,
Enteric Fermentation	CH ₄	80	100		between the	
Iron and Steel Production	CO_2	120	90		current year of the total i	
Manure Management	CO ₂	70	80		(the change	•
Rice Cultivation	CH ₄	45	50		inventory en	
Cement Production	CO ₂	35	30		time), weigh	=
Croplands Remaining Croplands	N_2O	8	6		relative cont this category	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4		total emissic	
Iron and Steel Production	CH ₄	1.5	1		base year (level	
	TOT	AL: 410.5	TOTAL: 58	31	assessment	n base year).

2006 IPCC Equation for a Trend Assessment (Approach 1)

Equation 4.2 Trend Assessment (Approach 1)

$$T_{x,t} = \frac{E_{x,0}}{\sum_{y} |E_{y,0}|} \cdot \left[\frac{(E_{x,t} - E_{x,0})}{|E_{x,0}|} \right] - \frac{(\sum_{y} E_{y,t} - \sum_{y} E_{y,0})}{|\sum_{y} E_{y,0}|} \right]$$

Where,

 $T_{x,t}$ = trend assessment of source or sink category x in year t as compared to the base year (year 0)

 $|E_{x,0}|$ = absolute value of emission or removal estimate of source or sink category x in year 0

 $E_{x,t}$ and $E_{x,0}$ = real values of estimates of source or sink category x in years t and 0, respectively

$$\sum_{y} E_{y,t} \text{ and } \sum_{y} E_{y,0} = \text{total inventory estimates in years } t \text{ and 0, respectively}$$

Note if base year = zero, activity was not occurring than use equation 4.3 to calculate trend assessment

EQUATION 4.3

TREND ASSESSMENT WITH ZERO BASE YEAR EMISSIONS

$$T_{x,t} = \left| E_{x,t} / \sum_{y} \left| E_{y,0} \right| \right|$$

2019 Refinement Equation for Trend Assessment (Approach 1) Updated/Simplified

Improved approach to identifying categories whose trend contributes to the trend of the overall inventory, which may not be captured by level assessment.

$$T_{x,t} = \frac{E_{x,t} - E_{x,0}}{\sum_{i} E_{i,t} - \sum_{i} E_{i,0}}$$

Where:

$$T_{x,t}$$
 = trend assessment of source or sink category x in year t as compared to the base year (year 0)

$$E_{x,0}$$
 and $E_{x,t}$ = value of emission or removal estimate of source or sink category x in year 0 and year t

$$\sum_{i} E_{i,t}$$
 and $\sum_{i} E_{i,0}$ = total inventory estimates in years t and 0, respectively

for
$$i = 1, ..., n$$

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO ₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.02		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.08		
Road Transport	CO ₂	60	110	0.03		
Enteric Fermentation	CH₄	80	100	0.02		
Iron and Steel Production	CO ₂	120	90	0.1		
Manure Management	CO ₂	70	80	0.02		
Rice Cultivation	CH₄	45	50	0.02		
Cement Production	CO ₂	35	30	0.02		
Croplands Remaining Croplands	N_2O	8	6	0.01		
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4	0.00		
Iron and Steel Production	CH ₄	1.5	1	0.00		

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.02		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.08		
Road Transport	CO ₂	60	110	0.03		
Enteric Fermentation	CH ₄	80	100	0.02		
Iron and Steel Production	CO ₂	120	90	0.1		
Manure Management	CO ₂	70	80	0.02		
Rice Cultivation	CH ₄	45	50	0.02		
Cement Production	CO ₂	35	30	0.02		
Croplands Remaining Croplands	N_2O	8	6	0.01		
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4	0.00		
Iron and Steel Production	CH ₄	1.5	1	0.00		

TOTAL: 0.32

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.02	6%	
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.08	25%	
Road Transport	CO ₂	60	110	0.03	10%	
Enteric Fermentation	CH ₄	80	100	0.02	5%	
Iron and Steel Production	CO ₂	120	90	0.1	30%	
Manure Management	CO ₂	70	80	0.02	7%	
Rice Cultivation	CH ₄	45	50	0.02	5%	
Cement Production	CO ₂	35	30	0.02	7%	
Croplands Remaining Croplands	N ₂ O	8	6	0.01	2%	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4	0.00	1%	
Iron and Steel Production	CH ₄	1.5	1	0.00	0%	

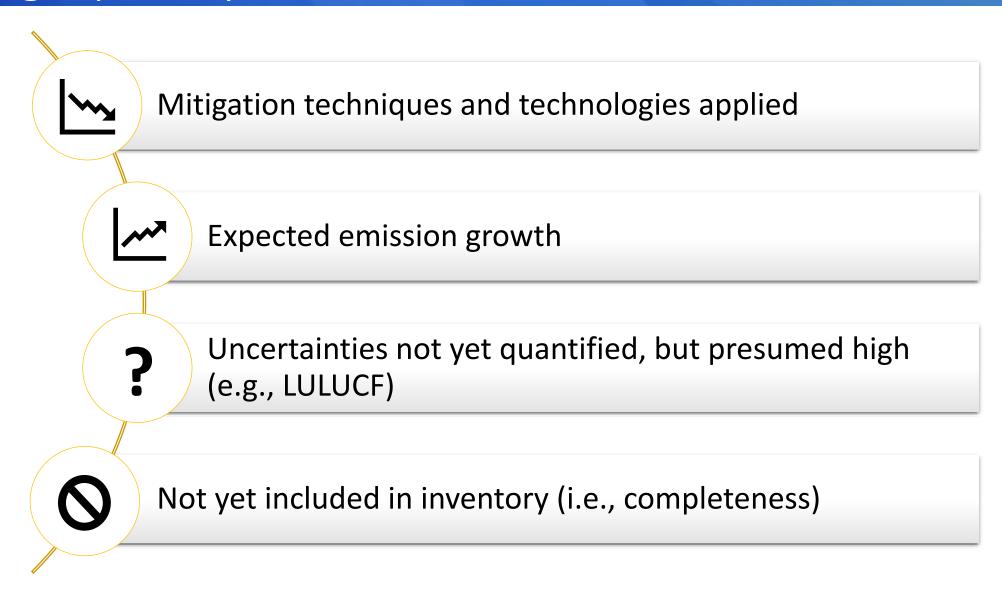
TOTAL: 0.32

Quantitative Assessment: Conducting an Approach 1 Trend Assessment

Emission Category	Gas	1990 Gg CO ₂ eq.	2018 Gg CO ₂ eq.	Trend Assessment	% Contribution to Trend	Cumulative Total
Iron and Steel Production	CO ₂	120	90	0.02	30%	30%
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.08	25%	56%
Road Transport	CO ₂	60	110	0.03	10%	65%
Cement Production	CO ₂	35	30	0.02	7%	73%
Manure Management	CO ₂	70	80	0.1	7%	80%
Energy Industries (solid fuel)	CO ₂	200	300	0.02	6%	86%
Rice Cultivation	CH ₄	45	50	0.02	5%	92%
Enteric Fermentation	CH₄	80	100	0.02	5%	97%
Croplands Remaining Croplands	N ₂ O	8	C	0.01	2%	99%
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4	0.00	10/	Sum to
Iron and Steel Production	CH₄	1.5	1	0.00	0%	95%

TOTAL: 0.32

Quantitative Assessment: Considering Uncertainty when Conducting an Approach 2 Trend Assessment

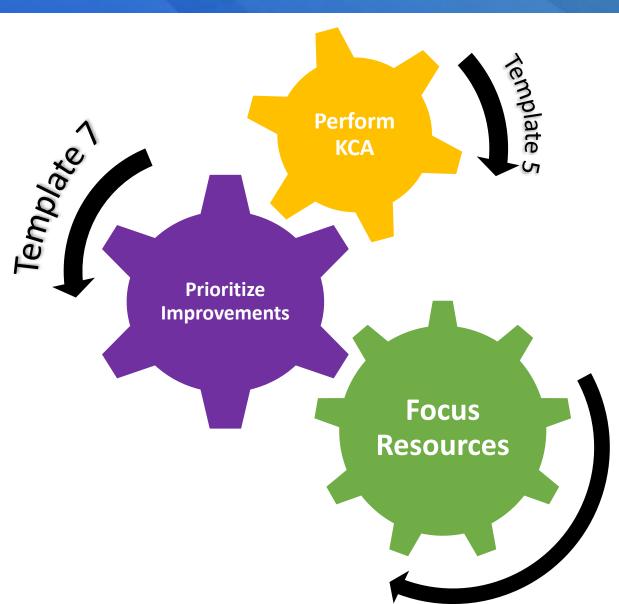


Emission Category	Gas	1990 Gg CO2 eq.	2018 Gg CO ₂ eq.	Trend Assessment	Trend Assessment Including Uncertainty	% Contribution to Trend	Cumulative Total
Energy Industries (solid fuel)	CO ₂	200	300	0.02	=0.02*U _{x,2018}		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.08			
Road Transport	CO ₂	60	110	0.03			
Enteric Fermentation	CH ₄	80	100	0.02			
Iron and Steel Production	CO ₂	120	90	0.1			
Manure Management	CO ₂	70	80	0.02			
Rice Cultivation	CH ₄	45	50	0.02			
Cement Production	CO ₂	35	30	0.02			
Croplands Remaining Croplands	N ₂ O	8	6	0.01			
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	1	4	0.00			
Iron and Steel Production	CH ₄	1.5	1	0.00	TOTAL:		

TBD

Qualitative Assessments to Conducting Key Category Analysis

Recap: Why Do a Key Category Analysis?



Identify categories to prioritize in inventory planning and National GHG inventory improvement plan

Focus Improvement Efforts on Key Categories

- Choose higher-tiered methods (Tier 2, 3)
- Obtain improved activity data
- Improve/establish institutional arrangements
- Focus QA/QC, etc.

Key Categories in the National Inventory Compilation Cycle

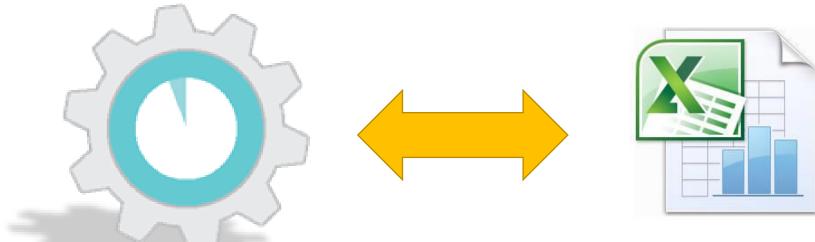
• Save all compilation files and references to create an inventory archive

• Backup the archive

- Finalize inventory report, including reporting tables
- Develop improvement plan
- Publish/submit inventory for UNFCCC reporting on time
- Conduct & document QA/QC procedures, such as basic peer review
- Address QA/QC findings

- Inventory inception meeting
- Start with previous inventory, if available
- Review and implement improvement plan
- Identify Activity Data and choose methodologies
- Collect Activity Data, Emission Factors
- QC all data

- Estimate emissions & removals
- Implement QC procedures
- Revise estimates, based on new data and QA/QC findings
- Ensure time series consistency
- Conduct uncertainty & key category analyses
- Document methodological approaches, recalculations, and references
- Write inventory report, prepare draft reporting tables


IPCC Inventory Software

Automates preparing a quantitative KCA analysis

roach 1: Level Assess	sment Approach 1: Trend Assessment					
A	В	С	D	E	F	G
² CC Category code	IPCC Category	Greenhouse gas	1994 Ex,t (Gg CO2 Eq)	(Ex,t) (Gg CO2 Eq)	Lx,t	Cumulative Total of Column F
2.G	Other Product Manufacture and Use	SF6, PFCs	753201.6125	753201.6125	0.7526	0.7526
2.F.6	Other Applications (please specify)	HFCs, PFCs	70736	70736	0.07068	0.82328
1.A.1	Energy Industries - Solid Fuels	CARBON DIOXID_	29743.85	29743.85	0.02972	0.853
2.F.5	Solvents	HFCs, PFCs	27420	27420	0.0274	0.8804
1.B.2.a	Oil	NITROUS OXIDE_	26988.6	26988.6	0.02697	0.90737
3.D.1	Harvested Wood Products	CARBON DIOXID_	-22505.91952	22505.91952	0.02249	0.92986
2.E	Electronics Industry	SF6, PFCs, HFCs_	20600.3124	20600.3124	0.02058	0.95044
1.A.3.b	Road Transportation	CARBON DIOXID	13448.0555	13448.0555	0.01344	0.96388
4.C	Incineration and Open Burning of Waste	CARBON DIOXID	7704.54027	7704.54027	0.0077	0.97158
4.A	Solid Waste Disposal	METHANE (CH4)	3705.3582	3705.3582	0.0037	0.97528
1.A.2	Manufacturing Industries and Construction	CARBON DIOXID	3516.442	3516.442	0.00351	0.97879
1.A1	Energy Industries - Liquid Fuels	CARBON DIOXID	3387.944	3387.944	0.00339	0.98218
2.G	Other Product Manufacture and Use	NITROUS OXIDE (3349.9096	3349.9096	0.00335	0.98552
2.D	Non-Energy Products from Fuels and Solv	CARBON DIOXID.	3342,603	3342.603	0.00334	0.98886

Key Category Analysis

National System Templates

Template 5: Key Category Analysis

Key Category Tool

Helps implement IPCC methods, and calculate Key Categories using Microsoft Excel or OpenOffice Calc

Note: EPA is updating this tool, so stay tuned for a new version in the near future.

Where to Obtain the Key Category Analysis Tool

Available Online at

https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems

Key Category Analysis (KCA)

This template identifies the sources and sinks that make the greatest contribution to national GHG emissions and removals. With this analysis of key categories, a GHG inventory team can prioritize over time the resources needed to implement the more impactful improvements to a national GHG inventory.

- Key Category Analysis (12 pp, 124 K)
- Key Category Analysis (PDF) (12 pp, 486 K)

Supporting Tool: The **Key Category Analysis Tool** enables a GHG inventory team to determine key categories of GHG emissions and removals from GHG inventory estimates.

Key Category Analysis Tool (MB

↑ Top of Page

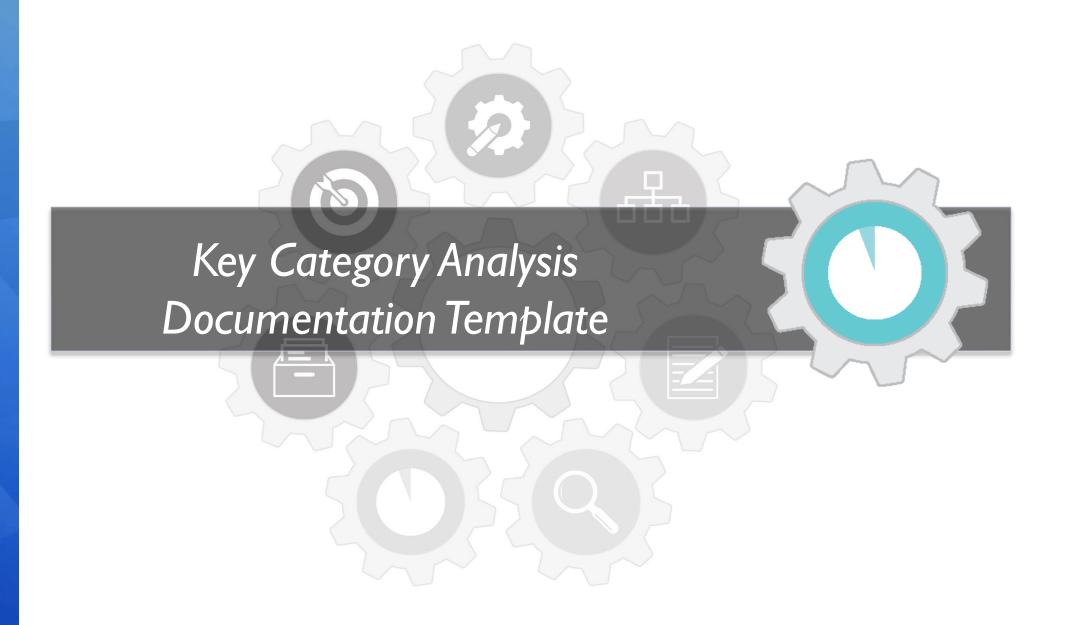
Documenting KCA Results

- Save copies of the file as different versions for draft and final analyses by inserting the date or version number at the end of the file name (e.g., "KCA Tool v2.xls").
- You may also use the 2006 IPCC Guidelines inventory software, which has a KCA module in it, or build your own spreadsheet(s) that follow the methodologies in the 2006 IPCC Guidelines.

STEP 3: Complete the Approach 1 key category current year level assessment

- Complete Table 5-1, below, using the results from the KCA you performed in Step 2. This table will be a record of the results of the IPCC Approach 1 key category level assessment for the most recent or current year (e.g., 2019). Add as many rows to the table as necessary to provide detailed information for each category.
- If or when the inventory is updated, update the KCA.

Approach 1 Assessment (Current Year)


Table 5-1: Key Categories Based on Contribution to Total National Emissions

IPCC Category Code	IPCC Category	Gas	Current Year Emissions (Gg CO ₂ Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions

^{*}Represents results from the "Key Category Approach 1 Assessment for the Current Year" sheet in the EPA KCA tool.

STEP 4: Complete the Approach 1 key category base year level assessment and trend assessment

- Complete this step if your country has GHG inventories with a time series of more than one year.
- # If your country has a GHG inventory for only one year, proceed to Step 5.

How this Template Will Help!

The Key Category Analysis Tool and Template will help the inventory team:

- Identify, document, and summarize all key categories identified using latest Inventory based on approaches available
 - Approach 1
 - Approach 2 (reflects uncertainty)
 - Qualitative criteria
- Document inventory improvements for the future

Step 1: Level Assessment (Current Year)

Approach 1 Level Assessment (Current Year)

Table 5.1: Key Categories Based on Contribution to Total National Emissions in Current Year [year, e.g., 2019, excluding LULUCF]

IPCC Category Code	IPCC Category	Gas	Current Year Emissions (Gg CO ₂ Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous Fuel)	CO ₂	7,500	30%	30%
1A3e	Fuel Combustion Activities - Transport - Other Transportation	CH ₄	5,000	20%	50%
2C3	Metal Industry -Aluminum Production	PFC	4,800	19%	69%
1A3a	Fuel Combustion Activities - Transport - Domestic Civil Aviation	CO ₂	1,000	3%	72%
3C1	Biomass Burning	N_2O	700	3%	75%
		•••		•••	

Steps 2-7: Key Categories from Conducting Level Assessment for Base Year, Trend Assessment using Approach 1 (Approach 2 if feasible) and Qualitative Criteria

- Repeat process in remaining tables within template to list key category identified from each assessment
 - Approach 1
 - Level Analysis (current year)
 - Level Analysis (base year)
 - Trend Analysis
 - Approach 2
 - Level Analysis (current year)
 - Level Analysis (base year)
 - Trend Analysis
 - Qualitative

Table 5-2: Key Categories Based on Contribution to Total National Emissions in Base Year [year, e.g., 2000]

IPCC Category Code	IPCC Category	Gas	Base Year Emissions (Gg CO ₂ Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	7,200	32%	32%
	Approach 1 Level Ass	coccmo	nt (Baco	Voorl	

Table 5-3: Key Categories Based on Contribution to Overall Trend in Net National Emissions

IPCC Category Code	IPCC Category	Gas	Base Year Emissions (Gg CO ₂ Eq.)	Current Year Emissions (Gg CO ₂ Eq.)	Contributi on to Trend	Cumulativ e Contributi on to Trend
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	7,200	7,500	31%	31%

Approach 1 Trend Assessment

Step 8: Key Category Analysis Summary

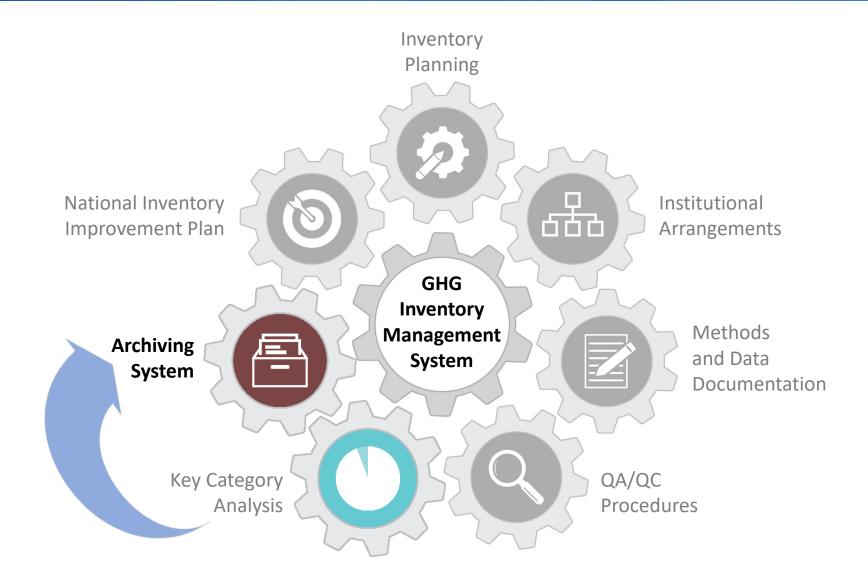
Table 5-8: Summary of Key Categories Identified and Methodology

IPCC Category Code			Identification Criteria (L1, T2, Q, etc)	Comments	
1A1 Fuel Combustion Activities - Energy Industries (Gaseous)		CO2	L1, T1	None	

Step 9: Improvements to GHG Inventory

Table 5-9: Improvements to the GHG inventory

Improvement #	Sector	Source Category and IPCC Tier Used	Potential Improvement	Steps Needed to Implement This Improvement
1	Energy	Transport-Railways (CO2, CH4, N2O)	Currently no estimates, need to include	Find source for activity data and if available, data on uncertainty
2	IPPU	Cement Production (CO2)– Tier 1	Move to Tier 2 because this category is a key category	Establish IA with data provider for clinker production data
3	IPPU	Aluminum Production (PFCs)		Select applicable category specific QC procedures (e.g., comparing AD to other available data, comparing EFs to defaults and those for production in region, if available). Collect relevant data Conduct comparisons Prepare documentation outline


Action Items for Key Category Analysis

- 1. Assign specific responsibilities for who will do the KCA
- 2. Collect all emissions and removal estimates and if available, also the corresponding uncertainty assessments
- 3. Ensure analysis is at appropriate level of disaggregation
- 4. Conduct the Key Category Analysis
- 5. Document KCA results in the template
- 6. Identify inventory improvements based on KCA results
- 7. Archive analysis and KCA data for future inventories, review, and staff training

Next template...

Thank You For Your Attention!

For questions & more information, email: ghgi.transparency@epa.gov

Toolkit for Building National GHG Inventory Systems

https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems