

GHG Inventory Stationary combustion

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP Training on 2006 IPCC Guidelines for preparing National GHG Inventory:

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

- 1. Stationary combustion coverage in 2006 IPCC guideline
- 2. Analysis of 2006 IPCC Guidelines and 2019 Refinement
- 3. Stationary Combustion in GHGI, 2010
 - Data collection
 - Tier selection EF, Activity data
 - Emissions Philippines
- 4. Sample calculation

Outline of Energy Sector

1. Energy Sector: scope and importance

- 2. Fuel Combustion (stationary and mobile): CO2 emissions
- 3. Fuel Combustion: CH4 and N2O emissions

4. Methodological issues:

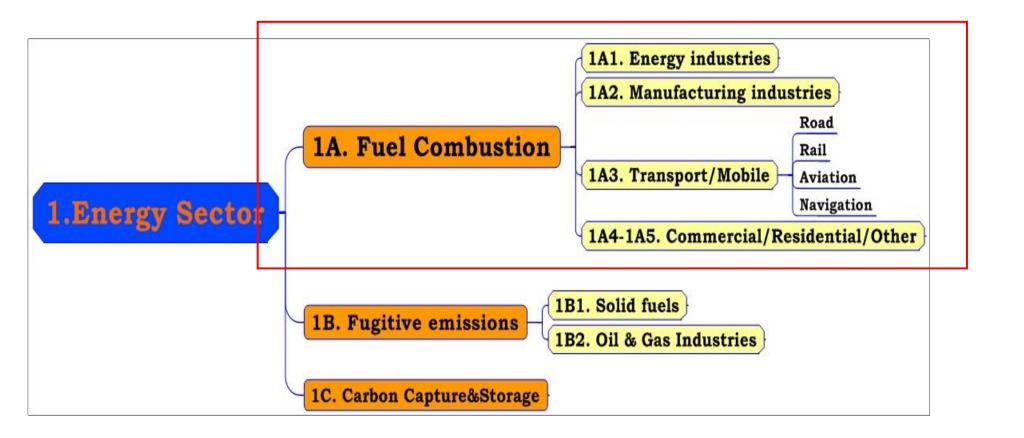
- 4.1 Biomass
- 4.2 Road Transport
- 4.3 International bunker
- 4.4 Waste as a fuel
- 4.5 Reference Approach
- 4.6 Excluded carbon

5. Fugitive Emissions

- 5.1 Coal mines
- 5.2 Oil and gas systems

6. Carbon Dioxide Transport, Injection and Geological Storage

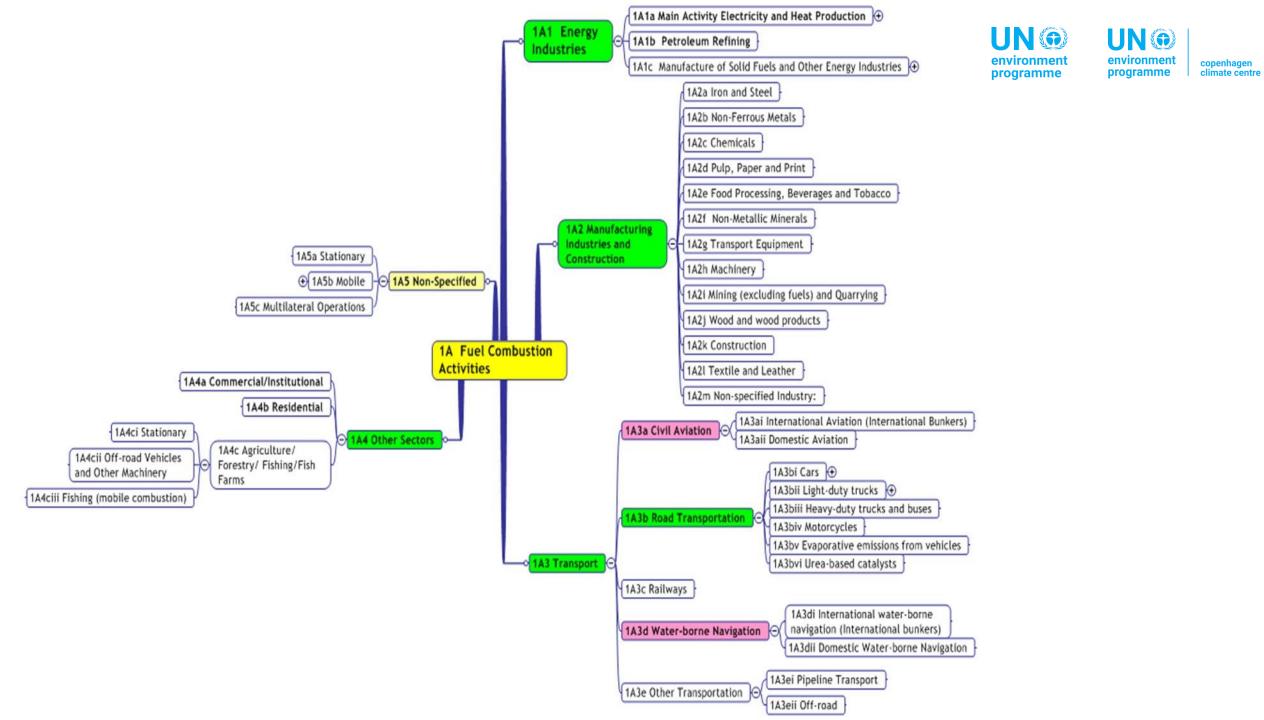
7. Summary


Energy Sector: Scope

- 1. Exploration and exploitation of primary energy sources
- 2. Conversion of primary energy sources into more useable energy forms in refineries and power plants
- 3. Transmission and distribution of fuels
- 4. Use of fuels in stationary and mobile applications

Energy Sector

Total GHG emissions-2010 in the Philippines (Million tons of CO_2e)


	CO ₂	CH₄	N₂O	HFCs	Total
Energy	50.698	1.888	0.519	-	53.105
Agriculture	0.696	33.853	8.604	-	43.152
Transport	23.718	0.125	0.331	-	24.174
Waste	0.015	14.527	1.017	-	15.559
IPPU	7.564	0.009	0.019	0.771	8.363
FOLU	(37.016)	0.007	0.002	-	(37.007)
		107.345			

GHG Inventory Report-2010 Philippines

Stationary combustion coverage in 2006 IPCC guideline OCCC

INTERGOVERNMENTAL PANEL ON Climate change

Fuel Combustion Stationary Sources in the Philippines

Energy industries

- Extraction, production and transformation
- Electricity generation, petroleum refining
- Autoproduction of electricity

Manufacturing industries and construction

- Iron and steel production
- Non-ferrous metal production
- Chemical manufacturing
- Pulp, paper and print
- Food processing, beverages and tobacco

Commercial/institutional

Residential

Agriculture/forestry/fisheries

Electricity production and petroleum refining are dominant examples for most countries.

Agriculture/Forestry/Fisheries is a difficult category to report for many Parties because separate data on the fuel use for these activities is often not available.

1A. Fuel Combustion

For inventory purposes, *fuel combustion* may be defined as the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus

- ✓ *Not Energy Sector:*
 - waste incineration without energy recovery \rightarrow Waste
 - use of fossil fuels as a feedstock in the Industrial Sector (e.g., coke in Iron&Steel) → IPPU
 - biomass fires/open burning \rightarrow AFOLU
- ✓ Coal mines fires, Gas flaring are in Fugitive Emissions

1A. Fuel Combustion. CO₂

- CO_2 emissions depend almost entirely on the carbon content of the fuel, though a small amount of carbon is un-oxidized (less than 1%).
- During the combustion process, most carbon is immediately emitted as CO2 regardless combustion technology
- By default *the 2006 IPCC Guidelines* assume a complete combustion process (100% carbon conversion or oxidation fraction is 1)

C + O2 = CO2 1 tonne C => 3.667 tonne CO2 (44/12)

Exercise 1: CO₂ emissions - ?

Anthracite (80-98% of Carbon, by mass):

- 1. "Hypothetical Anthracite": 100% of Carbon, 100% combustion
- 2. Anthracite: 85% of Carbon, 100% combustion
- 3. Anthracite: 85 % of Carbon, 99% combustion
- 4. Anthracite: 85% of Carbon, 95% combustion
- 5. Anthracite: 80% of Carbon, 99% combustion

CO2 emissions = Amount of Fuel * Emission Factor

EF = Carbon content * Oxidation fraction * 44/12

Anthracite - 1 tonne:

- 1. CO_2 emissions = 1 * 1* 1 * 44/12 = 3.667 tonne
- 2. CO₂ emissions = 1 * 0.85 * 1 * 44/12 = 3.117 tonne
- 3. CO_2 emissions = 1 * 0.85 * 0.99 * 44/12 = 3.086 tonne
- 4. CO_2 emissions = 1 * 0.85 * 0.95 * 44/12 = 2.961 tonne
- 5. CO_2 emissions = 1 * 0.80 * 0.99 * 44/12 = 2.904 tonne

1A. Fuel Combustion. Fuels

- **SOLID** (Coal and Coal Products)
 - including Coal, Coke and Derived Gases
- LIQUID (Crude Oil and Petroleum Products)
 - Including Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke
- GAS (Natural Gas)
- **OTHER FOSSIL FUELS** (Non-biomass municipal & Industrial wastes, waste oils)
- PEAT
 - treated as fossil fuel
- **BIOMASS** (Wood, Charcoal, Biofuels, Biomass fraction of MSW)
 - CO₂ emissions not included in total Energy emissions

✓ See definition of fuel types in Table 1.1, Volume 2, 2006 IPCC Guidelines

1A. Fuel Combustion. Units

The carbon content may vary considerably both among and within primary fuel types on a per mass or per volume basis. By converting to energy units this variability is reduced.

Fuel units:

- Volume: barrels (gallons), cubic feet, cubic meters, litres
- Mass: tonnes, kg
- Energy (expressed as either NCV or GCV): oil/coal-equivalent, calories, kW, MJ, BTU

The 2006 IPCC Guidelines - SI units :

- 1. Fuel Gg (TJ)
- 2. NCV TJ/Gg
- 3. Carbon content kg/GJ
- 4. $CO_2 EF kg/TJ$ (per energy basis)

environment programme

environment programme

	NCV, TJ/Gg	Carbon Content, kg/GJ	Default CO ₂ EF, kg/TJ
Biomass (Wood)	15.6	30.5	112 000
Peat	9.76	28.9	106 000
Lignite	8.9	27.6	101 000
Anthracite	26.7	26.8	98 300
Coking Coal	28.2	25.8	94 600
Residual Fuel Oil	40.4	21.1	77 400
Diesel Oil	43	20.2	74 100
Motor Gasoline	44.3	18.9	69 300
Natural Gas	48	15.3	56 100

- Some statistical offices use gross calorific values (GCV)
- The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel:
 - for coal and oil, the NCV is about 5 % less than the GCV
 - for most natural and manufactured gas, the NCV is about 10 % less
- Where fuel characteristics (moisture, hydrogen and oxygen contents) are known, the 2006 IPCC Guidelines give a more precise method to convert GCV to NCV data:

NCV = GCV - 0.212H - 0.0245M - 0.008Y

M – Moisture, H – Hydrogen, Y – Oxygen, %

Reference: UNFCCC CGE Training material

Exercise 2: CO₂ emissions - ?

- 1. Diesel burnt by:
 - Stationary source a diesel-generator
 - Mobile source a car

2. Amount of diesel burnt - 1 Giga-gram (or 1 201 923 litres, or 317 561 gallons)*

3. Assuming complete combustion

CO₂ emissions = Amount of Fuel * NCV * EF CO₂ emissions = 1 * 43 * 74 100 = 3 186 300 kg CO₂ = 3.19 Gg CO₂

Non-CO₂: CH₄ and N₂O

- Emission factors for non-CO₂ gases from fuel combustion are dependent on fuel and technology used (operating conditions, control technologies, quality of maintenance, age of equipment)
- Since the set of technologies, applied in each sector varies considerably, so do the emission factors
- Therefore it is not useful to provide default emission factors for these gases on the basis of fuels only

Non-CO₂: CH₄ and N₂O

environment programme cimate centre

INDU	TABLE 2.7 STRIAL SOURCE EMISSION FACTO	DRS				
	Em (kg/I					
Basic technology	Configuration	CH4	N ₂ O			
Liquid Fuels			•			
Residual Fuel Oil Boilers		3	0.3			
Gas/Diesel Oil Boilers		0.2	0.4			
Large Stationary Diesel Oil Engines >600hp (447 kW)		r 4	NA			
Liquefied Petroleum Gases Boilers		n 0.9	n 4			
Solid Fuels						
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1	r 0.7			
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14	r 0.7			
	Dry Bottom, wall fired	0.7	r 0.5			
Other Bituminous/Sub-bituminous Pulverised	Dry Bottom, tangentially fired	0.7	r 1.4			
	Wet Bottom	0.9	r 1.4			
Other Bituminous Spreader Stokers		1	r 0.7			
Other Bituminous/Sub-bit. Fluidised	Circulating Bed	1	r 61			
Bed Combustor	Bubbling Bed	1	r 61			
Natural Gas						
Boilers		r 1	n 1			
Gas-Fired Gas Turbines ² >3MW		4	1			
Natural Gas-fired Reciprocating Engines ³	2-Stroke Lean Burn	r 693	NA			
	4-Stroke Lean Burn	r 597	NA			
	4-Stroke Rich Burn	r 110	NA			
Biomass						
Wood/Wood Waste Boilers ⁴		n 11	n 7			

Reference: UNFCCC CGE Training material

Non-CO₂: CH₄ and N₂O

environment programme UN (20) environment programme

environment programme climate centre

TABLE 3.2.2 ROAD TRANSPORT N ₂ O AND CH ₄ DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES ^(a)							
Fuel Type/Representative Vehicle Category		CH4 (kg /TJ))	N2O (kg /TJ)			
	Default	Lower	Upper	Default	Lower	Upper	
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11	
Motor Gasoline -Oxidation Catalyst (c)	25	7.5	86	8.0	2.6	24	
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17	
Gas / Diesel Oil (e)	3.9	1.6	9.5	3.9	1.3	12	
Natural Gas ^(f)	92	50	1 540	3	1	77	
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na	
Ethanol, trucks, US ^(h)	260	77	880	41	13	123	
Ethanol, cars, Brazil ⁽ⁱ⁾	18	13	84	na	na	na	

<u>Tier 1</u>

Amount of fuel combusted, default NCV, carbon content, CO_2 EF (complete combustion)

Emissions = AD * EF

<u> Tier 2</u>

Amount of fuel, country-specific NCV, carbon content and CO_2 EF (oxidation rate), N₂O EF, CH₄ EF

<u>Tier 3</u>

Emissions depend on fuel type used, combustion technology, operating conditions, control technology, quality of maintenance, age of the equipment used to burn the fuel – plant-specific EFs (measurements)

Biomass

Biomass is a special case:

- CO₂ emissions from biomass combustion are not included in the national total. They are reported separately (*information item*)
- Non-CO₂ emissions are reported in the national total
- Net carbon emissions are accounted for in the LULUCF/AFOLU sector
- Peat is treated as a fossil fuel

Avoiding Double Counting Activity Data With Other Sectors as per IPCC 2006 guidelines

Fuel Combustion Sector:

- Use fuel combustion statistics instead of fuel delivery statistics.
- Be cautious about incomplete combustion data and potential double counting.
- Coordinate estimates between stationary source categories to avoid inaccuracies.

Industrial Processes and Product Use (IPPU) Sector:

- Account for emissions from synthesis gas production in IGCC under fuel combustion.
- Consider emissions from carbide production, especially when using carbon-rich fuels.

Metal Production (IPPU and AFOLU Sectors):

- Include emissions from the use of coal, coke, natural gas, and by-product fuels in metal production.
- Differentiate between fossil carbon materials and biogenic content for wood chips and charcoal.

Energy and Waste Sectors:

- Ensure consistency between stationary combustion and fugitive emissions accounting for methane from coal mine waste, landfill gas, and sewage gas.
- Report emissions from waste incineration with energy recovery in the Energy sector.

Waste Sector (Incineration):

- Distinguish between waste incineration with and without energy recovery.
- Assess and differentiate between fossil-carbon and biogenic content for accurate emissions reporting.

Waste Sector (Used Oils):

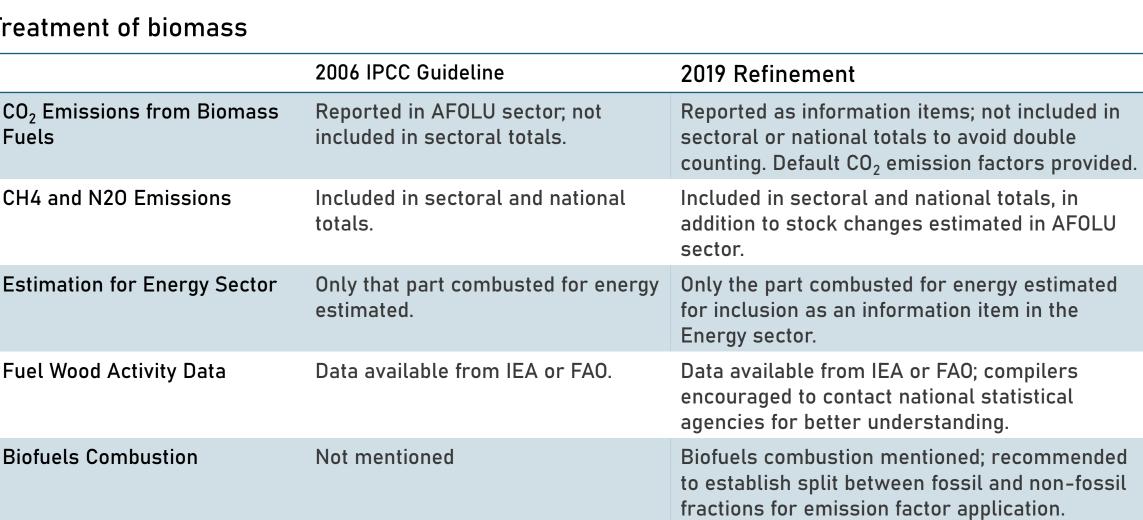
- Coordinate with those recovering used oils to assess the extent of burning.
- Estimate and report emissions in the Energy sector if used oils are used as fuel.

Summary

- Energy Sector = Fuel combustion (mobile and stationary) + Fugitive emissions + CCS
- Energy emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- $\rm CO_2$ emission factor depends on carbon content of fuel, non- $\rm CO_2$ on the technology used
- **Methodological issues** (biomass, international bunker, excluded carbon/fuels in other sectors)
- Reference approach is used for checking (CO₂)

2. Analysis of 2006 IPCC Guidelines and 2019 Refinement

INTERGOVENNMENTAL PANEL ON CLIMATE CHARGE


According to the 2019 Refinement
 to the 2006 IPCC Guidelines for
 National Greenhouse Gas
 Inventories no refinements has
 occurred in stationary combustion
 except treatment of biomass

2019 REFINEMENT

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES ON NATIONAL GREENHOUSE GAS INVENTORIES

Comparative Analysis of 2006 IPCC Guidelines and 2019 Refinement

Treatment of biomass

IIN @

environment

programme

CBIT-GSP

CLIMATE TRANSPARENCY

3. Stationary Combustion in GHGI, 2010

2010 Philippine Greenhouse

Gas Inventory Report

Executive Summary

Activity Data

List of sources under stationary combustion in IPCC.2006

\checkmark

Fuel types used for Inventory calculation in GHGI, 2010

Premium gasoline

Regular gasoline

Diesel

LPG

Others

Activity Data

environment programme

copenhagen climate centre

stationary combustion in GHGI, 2010

	Coal	Natgas	Crude	PremGas	RegGas	Kero	Diesel	Fuel Oil	LPG	Jet	Avgas	Naphtha
Indigeneous	644.66	8.75	55.97	-	-	-	-	-	-	-	-	-
Imports (+)	3,596.20	-	15,272.28	626.86	5.99	47.24	1,000.28	415.87	696.29	154.81	4.65	57.20
Exports (-)	-	-	-	(146.86)	(3.13)	-	(86.69)	(910.27)	(6.25)	(5.28)	-	(635.36)
Bunkering (-)	-	-	-	-	-	-	(105.29)	(105.44)	-	-	-	-
Stock Change (+/-)	-	-	33.06	37.35	(3.67)	(9.78)	35.83	25.13	(2.21)	-	(1.47)	(10.77)
Primary Energy Supply	4,240.87	8.75	15,361.31	517.35	(0.81)	37.47	844.12	(574.72)	687.83	149.53	3.18	(588.94)
Refinery (Crude Run)	-	-	(14,955.05)	1,517.41	625.93	532.29	4,706.69	5,290.67	434.45	675.35	-	800.12
Power Generation	-	-	-	-	-	-	-	-	-	-	-	-
Fuel Input (-)	(3,784.43)	(8.75)	-	-	-	-	(252.03)	(1,688.65)	-	-	-	-
Electricity Generation	1,433.02	1.46	-	-	-	-	82.91	707.00	-	-	-	-
Gas Manufacture	-	-	-	-	-	-	-	-	-	-	-	-
Transmission/Dist. Loss (-)	-	-	-	-	-	-	-	-	-	-	-	-
Energy Sector Use & Loss	-	-	(771.66)	_	-	-	-	-	-	_	-	-
(-)			· /	0.00/.75	605.40	560 76	5 000 70	0.007.04	1 100 00		2.12	211.12
Net Domestic Supply	456.44	-	(365.40)	2,034.75	625.13	569.76	5,298.78	3,027.31	1,122.28	824.89	3.18	211.18
Statistical Difference	(383.57)	-	-	(115.30)	(54.25)	(10.47)	(114.46)	482.61	(10.68)	(24.78)	(0.27)	153.99
% Statistical Difference	(84.04)		-	(5.67)	(8.68)	(1.84)	(2.16)	15.94	(0.95)	(3.00)	(8.46)	72.92
Net Domestic Consumption	840.01	-	-	2,150.05	679.38	580.22	5,413.24	2,544.70	1,132.95	849.67	3.45	57.20
INDUSTRY	700.70	-	-			41.98	474.47	1,414.72	51.48			
Manufacturing	700.70	-	-	-	-	40.36	278.15	1,374.37	51.37	-	-	-
Beverages	-	-	-	-	-	0.48	19.01 2.93	107.12	2.30	-	-	-
Tobacco	-	-	-	-	-	- 0.10	2.93	9.85 43.54	0.63	-	-	-
Coco/Vegetable Oil	-	-	-	-	-	0.10	39.86	43.54 57.33	-	-	-	-
Sugar	-	-	-	-	-	0.02	39.80	191.45	8.78	-	-	-
Other Food Processing Textiles/Apparel	-			-	-	0.85	3.92	191.45	0.56	-	-	-
Wood Prod/Furniture	-	-	-	-	-	0.02	9.10	5.49	0.00	-	-	-
Paper Prod/Printing	-	-	-	-	-	1.42	2.32	191.47	0.00	-	-	-
Chemicals Except Fertilizer	1.40					24.54	33.50	147.92	7.98			
Fertilizer	5.52	-	-		-	-	3.13	21.22	0.54	-		-
Rubber/ Rubber Products	-	-	_	-	-	0.05	1.88	27.48	-	_	_	-
Glass/Glass Products	_			-		0.36	5.80	59.86	3.04			-
Cement	685.67	_	_	_	_	0.01	14.70	185.41	2.89	_	_	-
Lube Refining	-	_	-	_	_	-	6.59	1.54	0.15	-	-	-
Other Non-Metlc Minerals	_	_	-	_	_	7.48	0.90	3.40	10.83	-	-	-
Basic Metal	8.10	_	-	-	_	3.54	83.30	160.80	12.81	-	-	-
Machinery/Equipment	-	-	-	-	-	0.72	6.93	2.85	0.56	-	-	-
Other Manufacturing	-	-	-	-	-	-	-	-	-	-	-	-
Mining	-	-	-	-	-	0.00	46.73	32.04	0.08	-	-	-
						0.00	10.10	52.01	0.00			

Consumption unit is in kilotonnes of oil equivalent (ktoe)

Activity Data

environment programme

												animal			
	Asphalt	Lubes	OtherPP	Hydro	Geo	Biomass	Ricehull	Charcoal	Fuelwood	Bagasse	Agriwaste	waste	Biofuels	Electricity	Total
Indigeneous	-	-	-	1,941.85	9,998.36	6,670.04	50.8	630.6	4,362	585	1,030	12	-	-	19,319.64
Imports (+)	6.84	-	-	-	-	-	-	-	-	-	-	-	-	-	21,884.53
Exports (-)	(1.35)	-	-	-	-	-	-	-	-	-	-	-	-	-	(1,795.19)
Bunkering (-)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(210.74)
Stock Change (+/-)	1.67	-	1.97	-	-	-	-	-	-	-	-	-	-	-	107.11
Primary Energy Supply	7.17	-	1.97	1,941.85	9,998.36	6,670.04	50.8	630.6	4,362	585	1,030	12	-	-	39,305.35
Refinery (Crude Run)	69.05	6.78	5.92	-	-	-	-	-	-	-	-	-	-	-	(290.39)
Power Generation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fuel Input (-)	-	-	-	(1,941.85)	(9,998.36)	-	-	-	-	-	-	-	-	-	(17,674.07)
Electricity Generation	-	-	-	670.71	999.84	-	-	-	-	-	-	-	-	3,894.94	3,894.94
Gas Manufacture	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Transmission/Dist. Loss (-)	-	-	-	-	-	-	-	-	-	-	-	-	-	(545.71)	(545.71)
Energy Sector Use & Loss	_				-	_	-			-		-	-	(205.52)	(977.18)
(-)														X	. ,
Net Domestic Supply	76.22	6.78	7.89	-	-	6,670.04	50.8	630.6	4,362	585	1,030	12	-	3,143.71	23,712.93
Statistical Difference	(1.26)	6.78	(121.17)	-	-	-	-	-	-	-	-	-	-	-	(558.23)
% Statistical Difference	(1.65)	100.00	(1,535.47)			-	-	-	-	-	-	-	#DIV/0!	-	(2.35)
Net Domestic Consumption	77.48	-	129.06	-	-	6,670.04	50.8	630.6	4,362	585	1,030	12	-	3,143.71	24,271.16
INDUSTRY	-	-	-	-	-	1,011.96	29.2	-	140	585	246	12	-	1,134.91	4,830.21
Manufacturing	-	-	-	-	-	1,011.96	29.2	-	140	585	246	12	-	1,093.15	4,550.06
Beverages	-	-	-	-	-	-	-	-	-	-	-	-	-	26.66	155.56
Tobacco	-	-	-	-	-	-	-	-	-	-	-	-	-	4.91	18.32
Coco/Vegetable Oil	-	-	-	-	-	-	-	-	-	-	-	-	-	4.75	58.67
Sugar	-	-	-	-	-	584.58	-	-	-	585	-	-	-	11.92	693.70
Other Food Processing	-	-	-	-	-	419.19	29.2	-	140	-	246	4	-	122.40	776.58
Textiles/Apparel	-	-	-	-	-	-	-	-	-	-	-	-	-	75.89	238.88
Wood Prod/Furniture	-	-	-	-	-	-	-	-	-	-	-	-	-	4.97	19.59
Paper Prod/Printing	-	-	-	-	-	-	-	-	-	-	-	-	-	62.89	258.38
Chemicals Except Fertilizer	-	-	-	-	-	-	-	-	-	-	-	-	-	211.44	426.78
Fertilizer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30.41
Rubber/ Rubber Products	-	-	-	-	-	-	-	-	-	-	-	-	-	9.72	39.12
Glass/Glass Products	-	-	-	-	-	-	-	-	-	-	-	-	-	7.00	76.05
Cement	-	-	-	-	-	-	-	-	-	-	-	-	-	77.24	965.93
Lube Refining	-	-	-	-	-	-	-	-	-	-	-	-	-	0.44	8.71
Other Non-Metlc Minerals		-	-	-	-	-	-	-	-	-	-	-	-	43.59	66.21
Basic Metal	-	-	-	-	-	-	-	-	-	-	-	-	-	120.42	388.96
Machinery/Equipment	-	-	-	-	-	-	-	-	-	-	-	-	-	304.11	315.17
Other Manufacturing	-	-	-	-	-	8.20	-	-	-	-	-	8	-	4.83	13.03
Mining	-	-	-	-	-	-	-	-	-	-	-	-	-	16.45	95.30
Construction	-	-	-	-	-	-	-	-	-	-	-	-	-	25.31	184.85

Emission Factors

- Emission factors used for Inventory calculation in GHGI, 2010
 - IPCC, 1997

										Μ
ACTIVITY				NATURAL GAS	ΟΙΙ		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES	Т
Energy Ind	ustries		1	1	3		30	200	30	
Manufactur	ing Industries & Construction		10	5	2		30	200	30	Г
	Domestic Aviation					0.5				0
	Deed				Gasoline	Diesel				S
Transport	Road			50	20	5				L
	Railways		10		5					So
	National Navigation		10		5					
	Commercial/Institutional		10	5	10)	300	200	300	
Other	Residential		300	5	10		300	200	300	
Sectors	Aariculture/Forestry/Fishing	Stationary	300	5	10		300	200	300	
	Agriculture/Tolestry/Tisting	Mobile		5	5					

Source: IPCC (1997)

TABLE 6. N2O EMISSION FACTORS (KG/TJ)

	ACTIVITY			NATURAL GAS	OIL		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES
Energy Ind	ustries		1.4	0.1	0.6		4	4	4
Manufactur	ing Industries & Construction		1.4	0.1	0.6		4	4	4
	Domestic Aviation					2			
	Dead				Gasoline	Diesel			
Transport	Road			0.1	0.6	0.6			
	Railways		1.4		0.6				
	National Navigation		1.4		0.6				
	Commercial/Institutional		1.4	0.1	0.6		4	1	4
Other	Residential		1.4	0.1	0.6		4	1	4
Sectors	Agriculture/Forestry/Fishing		1.4	0.1	0.6		4	1	4
		Mobile		0.1	0.6				

Durce: IPCC (1997)

However, the most recent emission factors, as provided in the 2006 IPCC guideline and updated 2019 Refinement, are now available and are recommended for use in upcoming inventories.

TABLE 5. CH₄ EMISSION FACTORS (KG/TJ)

Emission factors that have been used in Energy Sector

TABLE 7. NO_X EMISSION FACTORS (KG/TJ)

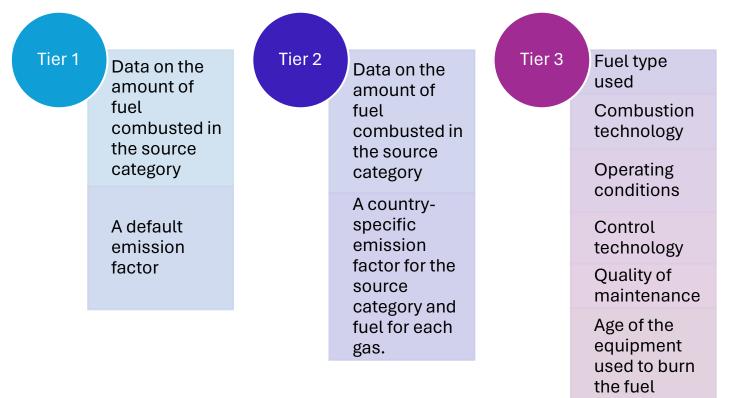
	ΑCTIVITY			NATURAL GAS	OIL		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES
Energy Ind	ustries		300	150	20	0	100	100	100
Manufactur	ing Industries & Construction		300	150	20	0	100	100	100
	Domestic Aviation				300				
	Dead				Gasoline	Diesel			
Transport	Road			600	600	800			
	Railways		300		1200				
	National Navigation		300		1500				
	Commercial/Institutional		100	50	100		100	100	100
Other	Residential		100	50	100		100	100	100
Sectors	A prioritum (Forester (Fishing	Stationary	100	50	10	0	100	100	100
	Agriculture/Forestry/Fishing	Mobile		1000	120	00			

Source: IPCC (1997)

TABLE 8. CO EMISSION FACTORS (KG/TJ)

ACTIVITY			COAL	NATURAL GAS	OIL		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES
Energy Indu	ustries		20	20	15	5	1000	1000	1000
Manufactur	ing Industries & Construction		150	30	10)	2000	4000	4000
	Domestic Aviation				10	0			
	Dead				Gasoline	Diesel			
Transport	Road			400	8000	1000			
	Railways		150		1000				
	National Navigation		150		1000				
	Commercial/Institutional		2000	50	20		5000	7000	5000
Other	Residential		2000	50	20		5000	7000	5000
Sectors	Agriculture /Forester /Fishing	Stationary	2000	50	20		5000	7000	5000
	Agriculture/Forestry/Fishing			400	100	00			

Source: IPCC (1997)


Tier Selection

Tier 1: fuel combustion from national energy statistics and default emission factors

Tier 2: fuel combustion from national energy statistics, together with country-specific emission factors, where possible, derived from national fuel characteristics

Tier 3: fuel statistics and data on combustion technologies applied together with technology-specific emission factors

Tier Selection

For stationary combustion, tier 1 has used in GHGI, 2010

It is based on fuel consumption data and default emission factors

Equations for Calculation – Tier 1

The following equation is used to estimate GHG emission

EQUATION 2.1 GREENHOUSE GAS EMISSIONS FROM STATIONARY COMBUSTION

 $Emissions_{GHG, fuel} = Fuel Consumption_{fuel} \bullet Emission Factor_{GHG, fuel}$

Where:

$Emissions_{GHG, fuel}$	= emissions of a given GHG by type of fuel (kg GHG)
Fuel Consumption _{fuel}	= amount of fuel combusted (TJ)
$Emission \ Factor_{GHG,fuel}$	= default emission factor of a given GHG by type of fuel (kg gas/TJ). I CO_2 , it includes the carbon oxidation factor, assumed to be 1.

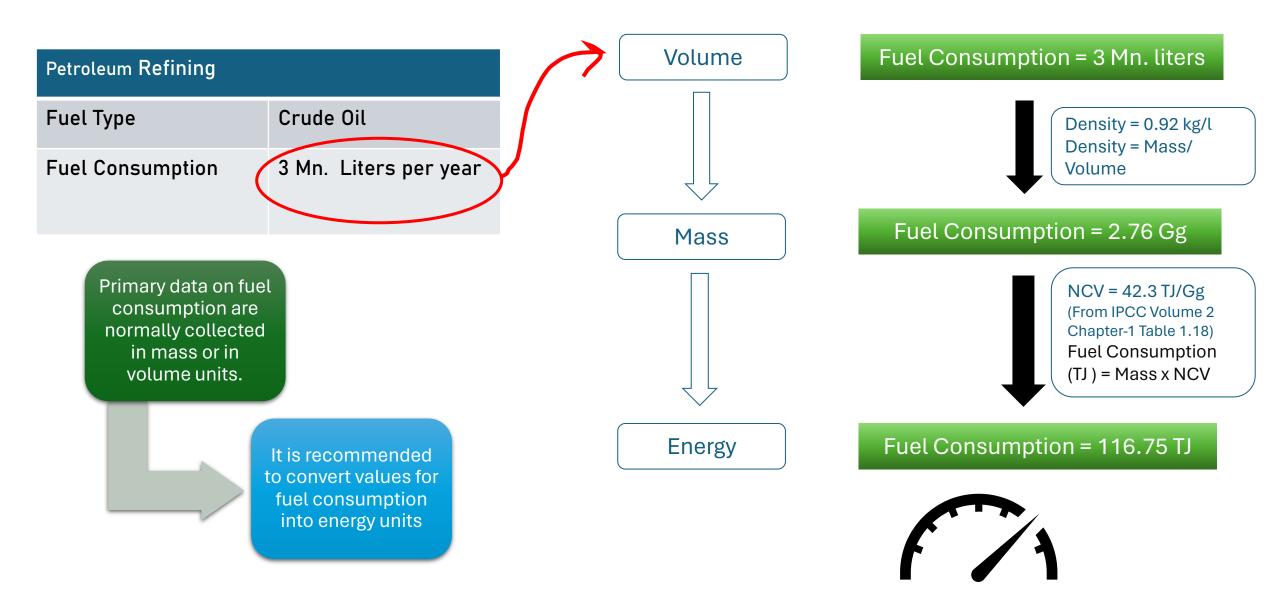
The following equation is used to calculate the total emissions by gas from the source category

EQUATION 2.2 TOTAL EMISSIONS BY GREENHOUSE GAS $Emissions_{GHG} = \sum_{fuels} Emissions_{GHG,fuel}$ Calculations are overall same for the all-emission sources which will be used tier 1 calculation.

Default emission factors can be changed due to

✓ Stationary combustion type

(Energy, Residential,


industrial.. etc)

✓ Fuel Type

For

Example – Petroleum Refining Activity Data

Example Tier 1 – Calculation

Calculating GHG emission by gas using equation 2.1

 $Emission_{GHG,fuel}(kg \ GHG) = Fuel \ consumption_{fuel}(TJ) \times Emission \ factor_{GHG,fuel}(Kg \ gas/TJ)$

<u>CO₂ Emission estimation</u>

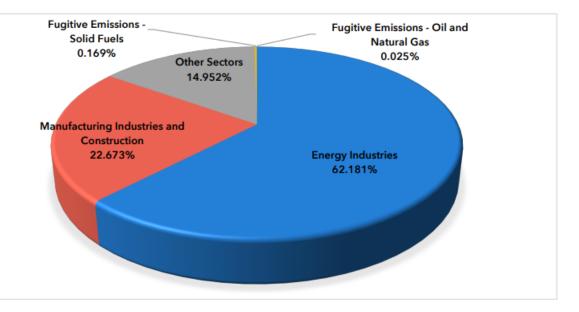
```
E_{CO2} = 116.75 \text{ TJ x } 73 300 \text{ kg } \frac{\text{CO}_2}{\text{J}} \text{/TJ}
= <u>8,557.62 t CO_2</u>
```

CH₄ Emission estimation

 $E_{CH4} = 116.75 \text{ TJ x 3 kg } CH_4 / TJ$ = <u>0.35 t CH_4</u>

N₂O Emission estimation

 $E_{N2O} = 116.75 \text{ TJ x } 0.6 \text{ kg } \text{N}_2\text{O} /\text{TJ}$ $= 0.07 \text{ t } \text{N}_2\text{O}$


TABLE 2.2 DEFAULT EMISSION FACTORS FOR STATIONARY COMBUSTION IN THE ENERGY INDUSTRIES (kg of greenhouse gas per TJ on a Net Calorific Basis)											
Fuel	CO2 Default Lower Upper Emission Factor			Default Emission Factor	Emission			N2O Default Lower Upper Emission Factor			
Crude Oil	73 300	71 100	75 500	r 3	1	10	0.6	0.2	2		
Orimuision	I 77000	09 300	85 4 00	1 5	i	10	0.0	0.2	2		

Default emission factor table was derived from IPCC Volume 2

Emissions

Figure 3. Emission shares of energy subsectors, 2010 national GHGI

Table 3. Summary of 2010 energy sector emissions, per subsector and per gas (values in $Mt CO_2 e$)

	CO ₂	CH₄	N ₂ O	Total
Energy Industries	32.803	0.049	0.168	33.020
Manufacturing Industries and Construction	11.887	0.055	0.095	12.040
Other Sectors	5.995	1.692	0.257	7.940
Fugitive Emissions – Solid Fuels	-	0.090	-	0.090
Fugitive Emissions – Oil and Natural Gas	0.012	0.001	0.000	0.013
	TOTAL			53.103

Source: Executive Summary_2010 National GHGI Report.pdf (climate.gov.ph)

Environmental Impact GHG Emission by sector

Sector		nission CO2e)		lonCO ₂ (MtCO ₂ e)	Emissi	GHG ion*** CO2e)	Total GHG Emission (% Change)
	2020	2021	2020	2021	2020	2021	2020-2021
Electricity	70.7	73.6	0.3	0.3	71.0	73.9	4.1
Transport	28.0	31.3	0.2	0.2	28.2	31.5	12.0
Industry	11.3	12.4	0.1	0.1	11.3	12.5	10.4
Other Sectors*	11.3	12.0	0.1	0.1	11.4	12.1	6.8
Energy**	0.8	0.4	0.0	0.0	0.8	0.4	(49.2)
Total	122.0	129.8	0.6	0.6	122.6	130.4	6.4
		% Dist	ribution				Change in Distribution
Electricity	57.9	56.7	45.8	44.9	57.9	56.6	(1.2)
Transport	22.9	24.1	32.1	33.5	23.0	24.2	1.2
Industry	9.2	9.6	9.8	10.4	9.2	9.6	0.3
Other	9.2	9.3	12.0	11.1	9.3	9.3	0.0
Energy	0.7	0.3	0.3	0.1	0.6	0.3	(0.3)
Total	100.0	100.0	100.0	100.0	100.0	100.0	

*includes emission from the services, households and agriculture

**includes losses incurred in oil refining

*** Updated using GWP Values, Fifth Assessment Report, 2014 (AR5) and EF based on 2006 IPCC Guidelines (Tier 1)

The bulk of generation output from coal-fired power plants in the Philippines contributed significantly to the country's total greenhouse gas emissions

copenhagen

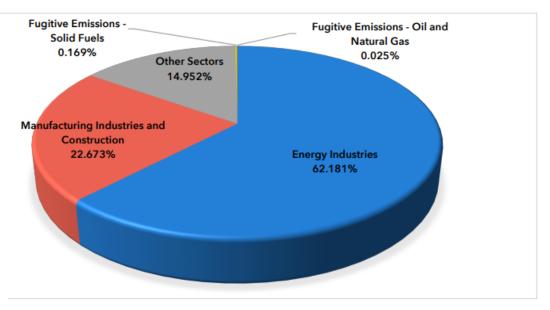
climate centre

Energy Industries Sub-Sector GHGI Inventory, 2010

- The energy industries subsector refers to the fuel input of power plants needed for electricity generation.
- Power generation sources in the country can be categorized according to the following systems: oil, diesel, coal, gas turbines, natural gas, hydropower, geothermal, and non-conventional sources which refer to wind, solar, and biomass resources.
- Of these eight, five are dependent on fossil fuels: oil-based power plants, diesel and gas turbine plants, natural gas systems, and coal-fired power plants.
- Hence, CO₂ emissions from this subsector currently come from the combustion mainly of these four fuel types: fuel oil, diesel, natural gas, and coal.

Electricity Generation GHGI Inventory, 2010

	Coal	Natgas	Crude	PremGas	RegGas	Kero	Diesel	Fuel Oil	LPG	Jet	Avgas	Naphtha
Electricity Generation	1,433.02	1.46	-	-	-	-	82.91	707.00	-	-	-	-
Gas Manufacture	-	-	-	-	-	-	-	-	-	-	-	-
Transmission/Dist. Loss (-)	-	-	-	-	-	-	-	-	-	-	-	-
Energy Sector Use & Loss	-	-	(771.66)	-	-		-	-		-	-	-


Significant portion of the Philippines' energy production is reliant on fossil fuels, leading to CO₂ emissions

Emission

- ✓ The energy sector was the largest emitting sector in the 2010 national inventory, emitting an estimated 53.105 Mt CO2e in 2010.
- ✓ Fuel combustion (excluding transportation) accounted for the majority of energy sector emissions - 53.002 Mt CO2e, equivalent to 99.806% of the sector's total.

Figure 3. Emission shares of energy subsectors, 2010 national GHGI

Table 3. Summary of 2010 energy sector emissions, per subsector and per gas (values in $Mt CO_2e$)

	CO ₂	CH₄	N₂O	Total
Energy Industries	32.803	0.049	0.168	33.020
Manufacturing Industries and Construction	11.887	0.055	0.095	12.040
Other Sectors	5.995	1.692	0.257	7.940
Fugitive Emissions – Solid Fuels	-	0.090	-	0.090
Fugitive Emissions – Oil and Natural Gas	0.012	0.001	0.000	0.013
	TOTAL			53.103

1.A.1 - Energy Industries

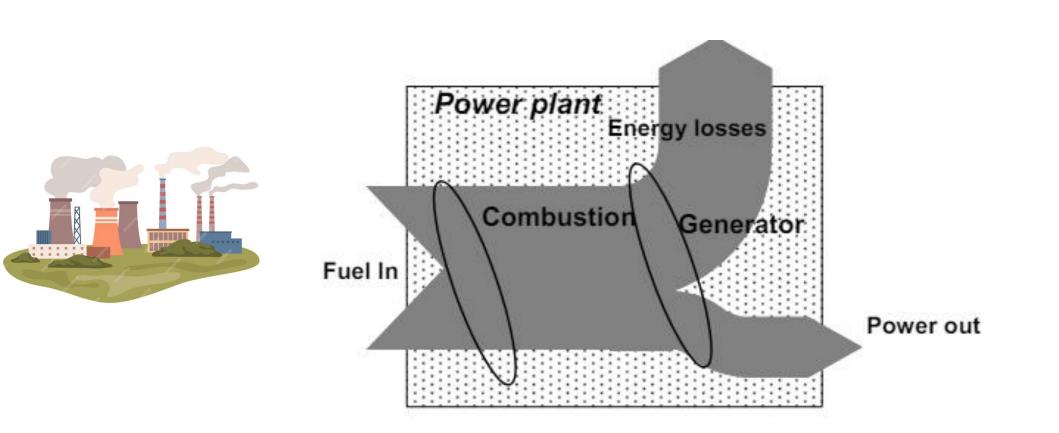
IPCC Software interfaces, procedure of data entry and calculations for **all sub-categories** of **Main Activity Electricity and Heat Production** and **Manufacture of Solid Fuel and other Energy industries** under **Energy Sector are same.**

CBIT-GSP

You can use guidance of following two sub-categories for others as well.

1.A.1 Energy Industries

1.A.1.a	Main Activity Electricity and Heat Production Guidance pro	ovided in next
	1.A.1.a.i Electricity Generation slides	
	1.A.1.a.ii Combined Heat Power Generation (CHP)	
	1.A.1.a.iii Heat Plants	
1.A.a.b	Petroleum Refining	
1.A.1.c	Manufacture of solid Fuels and Other Energy Industries	
	1.A.1.c.i Manufacture of Solid Fuels	
	1.A.1.c.ii Other Energy Industries	


4. Stationary Combustion in GHGI – example

Estimating GHG emissions related to

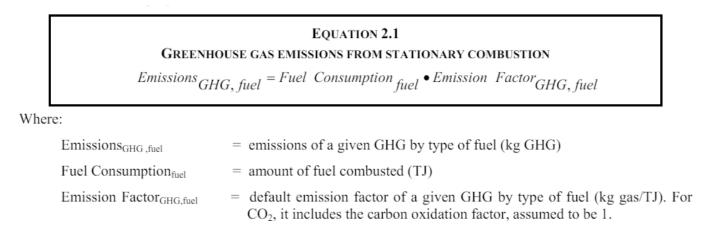
1.A.1.a.i - Electricity Generation

Process of Electricity generation

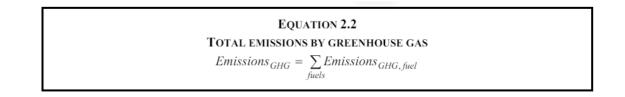
Tier 01 Estimation

Applying a Tier 1 emission estimate requires the following for electricity generation by fuel types.

Data on the amount of fuel combusted in the source
A default emission factor


Emission factors come from the default values provided together with associated uncertainty.

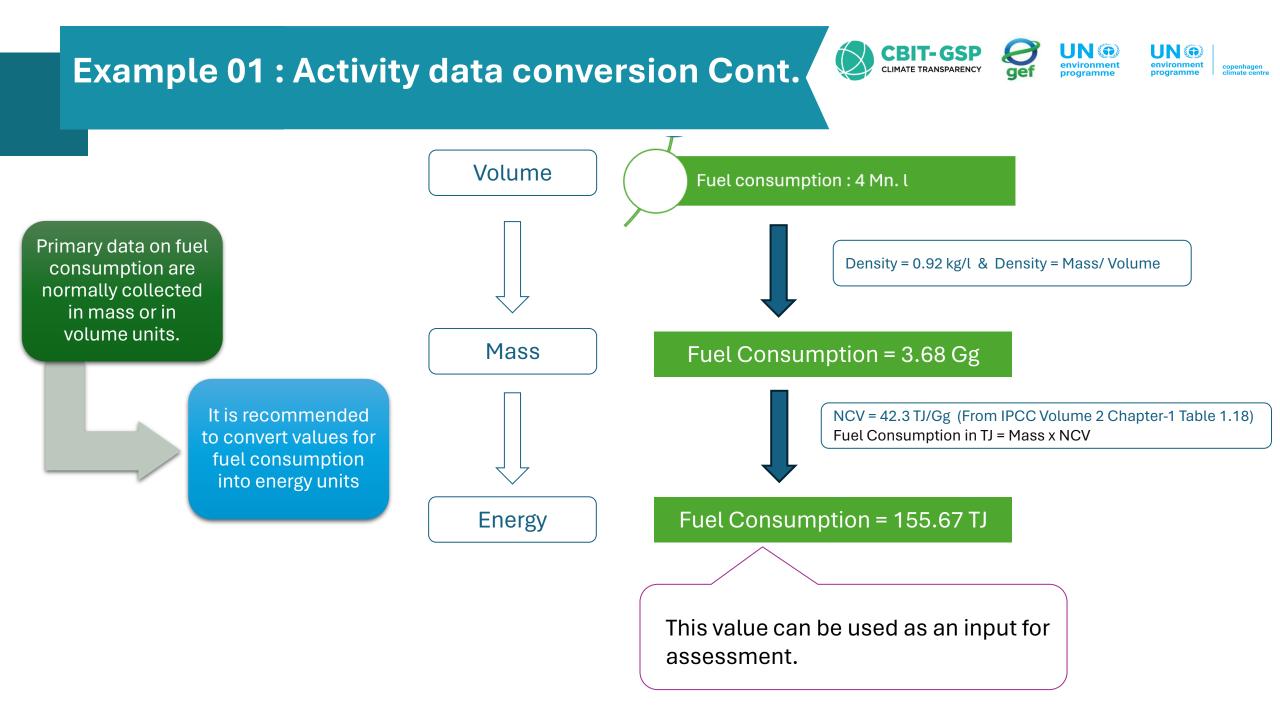
Undercity for the activity data included under each fuel types.


Tier 01 Estimation Cont.

The following equation is used to estimate GHG emission

The following equation is used to calculate the total emissions by gas from the source category

Example 01 : Activity data conversion



Item : Electricity generation-1

Fuel Type : Crude Oil

Fuel consumption : 4 Mn. l

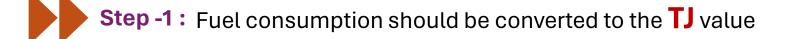
Example 02 : Tier 01 Estimation.

Activity data Electricity Generation (in ktoe)

Source Category/ Fuel	Coal	Natgas	Diesel	Fuel Oil
Electricity Generation	1433.02	1.46	82.91	707.00

Source : Tracking GHG: An inventory manual page: 154,155

This data was collected by considering the overall fuel consumption for different fuel types in the country in the year 2010.


Therefore, this activity can be used to estimate GHG emission under tier 1 & 2

Example 02 : Tier 01 Estimation.

Let's consider emission estimation of use of Coal for Electricity generation

Source Category/ Fuel	Coal
Electricity Generation	1433.02 ktoe

Example 02 : Tier 01 Estimation.

Selecting IPCC default emission Factor from:

" Default emission factors for stationary combustion in the Energy industries"

Data Table from => IPCC Volume 2 – Chapter 2 – Table 2.2

TABLE 2.2 DEFAULT EMISSION FACTORS FOR STATIONARY COMBUSTION IN THE ENERGY INDUSTRIES (kg of greenhouse gas per TJ on a Net Calorific Basis)											
		CO_2		CH ₄			N ₂ O				
Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper		
Sub-Bituminous Coal	96 100	92 800	100 000	1	0.3	3	r 1.5	0.5	5		
Lignite	101 000	90 900	115 000	1	0.3	3	r 1.5	0.5	5		
Oil Shale and Tar Sands	107 000	90 200	125 000	1	0.3	3	r 1.5	0.5	5		

Tier 01 Estimation Cont.

Calculating GHG emission by gas using equation 2.1

```
CO<sub>2</sub> Emission estimation
```

```
E_{CO2} = 60,000.55 \text{ TJ x } 96 100 \text{ kg } \text{CO}_2 / \text{TJ}
= 5,766.05 kt CO<sub>2</sub>
```

CH₄ Emission estimation

 $E_{CO2} = 60,000.55 \text{ TJ x } 0.3 \text{ kg } \text{CH}_4 / \text{TJ}$ = 18 t CH_4 N₂O Emission estimation

```
E_{CO2} = 60,000.55 \text{ TJ x } 1.5 \text{ kg } \text{N}_2 \text{O} /\text{TJ}
= 90 t \text{N}_2 \text{O}
```

Tier 01 Estimation Cont.

Calculating GHG emission by gas using equation 2.1

```
CO<sub>2</sub> Emission estimation
```

```
E_{CO2} = 60,000.55 \text{ TJ x } 95 200 \text{ kg } \text{CO}_2 / \text{TJ}
= 5,712.05 kt CO<sub>2</sub>
```

CH₄ Emission estimation

 $E_{CH4} = 60,000.55 \text{ TJ x } 0.4 \text{ kg } CH_4 / \text{TJ}$ = 24 t CH₄ N₂O Emission estimation

```
E_{CO2} = 60,000.55 \text{ TJ x } 1.8 \text{ kg } \text{N}_2 \text{O} /\text{TJ}
= 108 t \text{N}_2 \text{O}
```


How do we conduct GHG emission estimation for electricity generation using IPCC software?

1.A.1.a.i - Electricity Generation

This the work sheet for Electricity Generation

🏟 IPCC Inventory Software - chamara - [Worksheets]						-	o x
🖳 Application Database Inventory Year Workshee	ets Reports Tools Export/Impor	t Administrate Window	Help				_ 8 >
2006 IPCC Categories 🗸 👎	Fuel Consumption Data Fuel Combus	stion Emissions					
- 1 - Energy - 1.A - Fuel Combustion Activities - 1.A.1 - Energy Industries - 1.A.1.a - Main Activity Electricity and Heat Prod - 1.A.1.a.i - Electricity Generation - 1.A.1.a.ii - Combined Heat and Power Gen	Worksheet Sector: Energy Category: Fuel Combustion Act Subcategory: 1.A.1.a.i - Electricity Sheet: Fuel Consumption Data	Generation ata					2010
	Fuel Type (All fuels)	~					
			Equation	on 2.4			
 1.A.2 - Manufacturing Industries and Construction 1.A.3 - Transport 1.A.4 - Other Sectors 1.A.5 - Non-Specified 	Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)	
	S AV	F AV	U	⊽ c	CF	TC = C * CF	
	* Total			6			
 						0	
 ⊕ 4 - Waste ⊕ 5 - Other 					Fuel Mana	aner Time Se	eries data entry
					ruei Maria	illine se	anes data entry
	User notes			1.A.1.a.i - Time Series			▼ 👎
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIL	DE (CO2)		~

Country/Territory: Country X Inventory Year: 2010 Base year for assessment of uncertainty in trend: 1990 CO2 Equivalents: SAR GWPs (100 year time horizon) Database file:

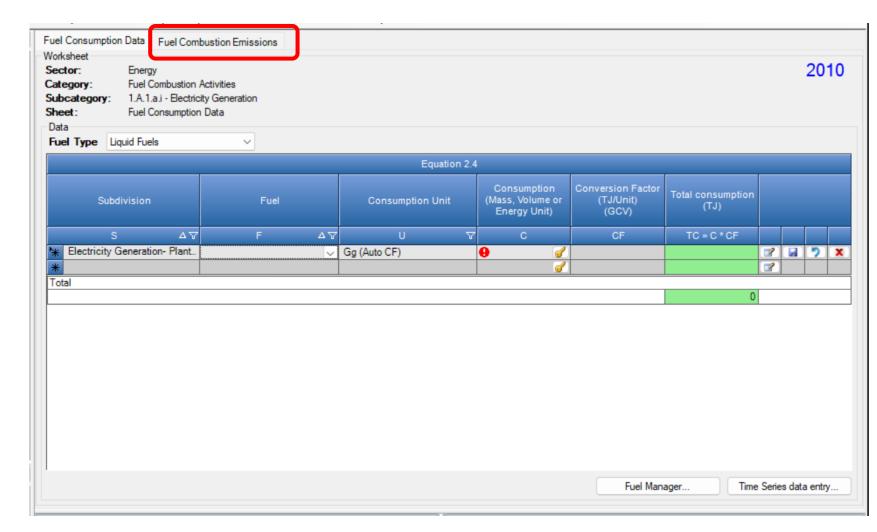
Activities at worksheet

When compiling a greenhouse gas (GHG) inventory for the electricity sector using IPCC software, the process is divided into two main sections.

forksneet Sector: Category: Subcategory: Sheet: Data Fuel Type Liq	Energy Fuel Combustion / 1.A.1.a.i - Electrici Fuel Consumption quid Fuels	ity Generation						20
				Equation 2	.4			
Subd	ivision	Fuel		Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)	
S	_	F	ΔΥ		v c	CF	TC = C * CF	
Electricity G	eneration- Plant		~	Gg (Auto CF)	9			3 3 7 7
Total								

Activities at worksheet

• Fuel Consumption Data:


This part is all about gathering details on how much fuel is being used. We need precise records of the types and amounts of fuel used within the electricity sector.

Fuel Consumption Data Fuel Comb Workshoet Fuel Comb Sector: Energy Category: Fuel Combustion / Subcategory: 1.A.1.a.i - Electrici Sheet: Fuel Consumption Data Fuel Type Fuel Type Liquid Fuels	ity Generation						20)10
	-	Equation 2.4						
Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)			
S AV	F AV		С	CF	TC = C * CF			
* Electricity Generation- Plant		Gg (Auto CF)	⊖			2	a 🤊	X
Total				Fuel Mana	0	Series d		

Activities at worksheet

• Fuel Combustion Data:

Fuel Combustion Data involves examining the emissions generated through the combustion process and accurately measuring and assessing their quantities.

CBIT-GSP

CLIMATE TRANSPARENCY

UN 💮

environment programme UN 💮

environment

programme

Entering Data in the Fuel Combustion Section

Let's walk through an example of how to input data

into the Fuel Consumption section

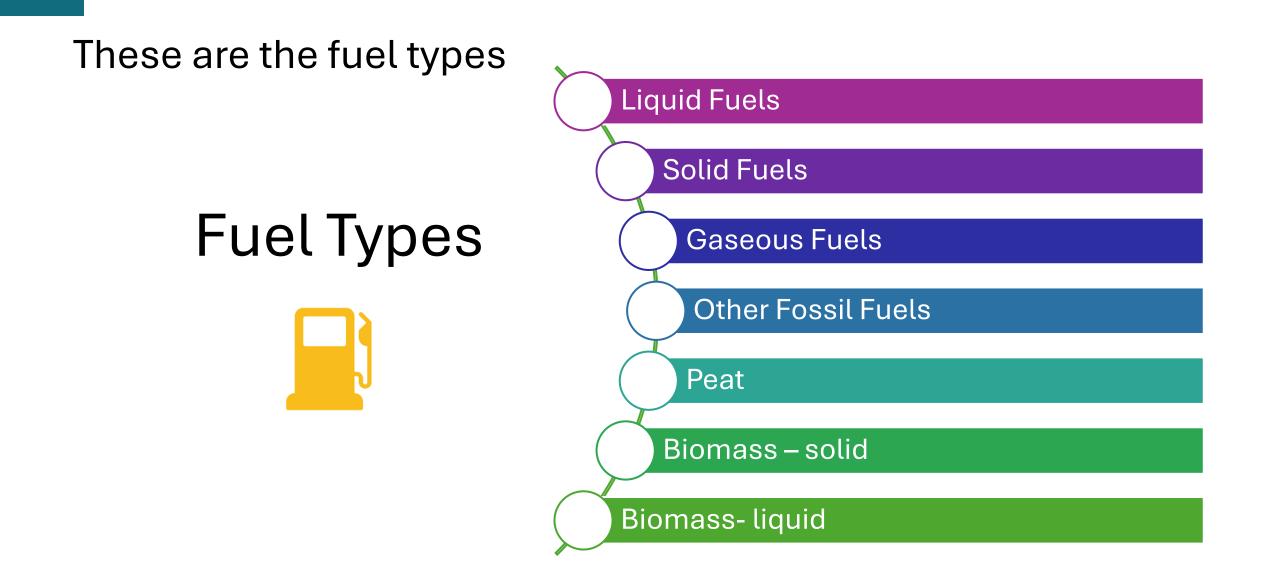
Item : Electricity generation - plant-01

Fuel Type : Crude Oil

Fuel consumption : 4500 TJ/year

Entering Data in the Fuel Combustion Section

environment programme


Frist select the "Fuel Type"

Fuel Consumptio	n Data	Fuel Combustion Emis	sions
Worksheet			
Sector:	Energ	IY	
Category:	Fuel (Combustion Activities	
Subcategory:	1.A.1	a.i - Electricity Generatio	n
Sheet:	Fuel (Consumption Data	
Data			
Fuel Type (A	ll fuels)	~	
(All fuels)			
	quid Fue		
	olid Fuels		
	aseous F		Fuel
-	ther Foss eat	al Fuels	
	eat omass -	aalid	
-	omass - omass -		F ∆⊽
	omass -		
	omass -		

Other fuel types

Entering Data in the Fuel Consumption Section

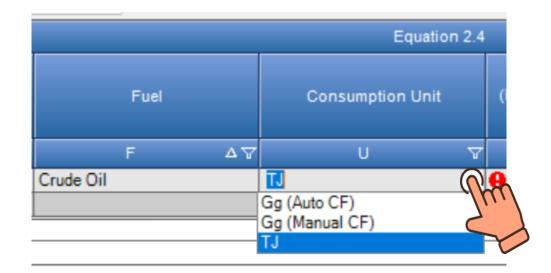
Enter the name or code of your electricity generation plant under the 'Subdivision' column.

Data Fuel Typ	e Liquid Fuels		~									
					Equat	ion 2.4						
	Subdivision		Fuel		Consumption Uni	t	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (GCV)	Total consumption (TJ)			
	S	ΔV	F	Δγ	U	∇	С	CF	TC = C * CF			
🔭 ectrici	y generation plant-	01 🗸			Gg (Auto CF)		θ 🧭			2	2	X
*							6			2		
Total												
									0			

Entering Data in the Fuel Consumption Section

Next, choose "crude oil" from the dropdown menu in the Fuel column.

		Equa	ition 2.4	
Subdivision	Fuel	Consumption Ur	nit	Consumption (Mass, Volume or Energy Unit)
S AV	F AT	U	V	С
Hectricity generation plant	Crude Oil	Gg (Auto CF)		θ 🤘
* Total	Fuel Name	Calorific Value TJ / Gg)		n content (GCV) kg C / GJ)
	Aviation Gasoline	44.3		19.1
	Bitumen			22
	Crude Oil	42.3		20
	Ethane			16.8
	Gas/Diesel Oil			20.2
	Jet Gasoline	44.3		19.1
	Jet Kerosene	44.1		19.5
	Liquefied Petroleum Gases	47.3		17.2


Entering Data in the Fuel Consumption Section

environment programme

Next, select "TJ" as the Consumption unit

Entering Data in the Fuel Consumption Section

Afterward, input the consumption quantity in the Consumption column

	Equation	1 2.4		
Consumpt	ion Unit		Consumption (Mass, Volume or Energy Unit)	
U		∇	С	
TJ			4500 🥑	
			₫	

Entering Data in the Fuel Consumption Section

CBIT-GSP CLIMATE TRANSPARENC

All right, those fields you see are the only ones available for input within the Fuel **Consumption section**

Towards the end, you've got some options in the last column:

- you can jot down any remarks •
- save your progress
- undo changes
- delete entries if needed.

Once done here, we'll move over to the Fuel Combustion Emission section.

Total consumption (TJ)			
TC = C * CF			
4500		2	X
4500			

Entering Data in the Fuel Combustion Section

Let's select for "Liquid fuels" as the fuel type

ions N2O Emissi 4) (Gg N20)
N2O
0
0

Entering Data in the Fuel Combustion Section

UN () environment

Next, click on the small "+" icon.

Fuel	Туре	Liquid Fuels		× [Uncertainti	es for Liquid F	Fuels		
							Equation 2.4		
		Subdivision			Fuel		Total consumption (TJ)	CO2 Emissions (Gg CO2)	
		S	۵V		F	Δ7	тс	CO2	
]	Elect	tricity generation	plant-01	Crude Oil			4500		0
T	otal								_
·							4500		0

Tier consideration using IPCC tool

Tier 1 Approach: Select IPC default emission factor in IPCC software

Tier 2 Approach: Enter country specific emission factor values

Tier 3 Approach: Enter technology specific emission factor values

actor in		Worksheet Sector: En Category: Fu Subcategory: 1.4	lata Fuel Combustion Emissions Energy fuel Combustion Activities 1.A.1.a.J - Dectricity Generation Fuel Combustion Emissions	Incertainties for Liquid Fuels		0				2010	
		Fuel type Equil	Thuês v o	ncettarloes for Liquid Fues		Equation 2.4					
			Subdivision	Fuel		onsumption (TJ)	CO2 Emissions (Gg CO2)		CH4 Emissions (Gg CH4)	N2O Emissions (Gg N20)	
		Bectricity g	S AT generation plant-01 Crude O	F	4.4	TC 4500	CO2	0	CH4	N2O 0 0	
on footor			Technology		CO2		CH4		N2O		
ion factor		Type of	of Technology Penetration (%)	Consumption (TJ) CO2 Emis Factor (kg CO2/						N2O Emissions (Gg N2O)	
										N20-C*EF (N20)/10%	
ission		plant-01	100	4500 Default Valu 733	e Lowerlimit Up	perlimit Unit 75500 kg/TJ	Paramet	ter U	Descriptio		
		Tatal									
		Total				4500		0		0 0	
	C02	Total		CH		4500		0	NZC	o o	
02 Emission Factor	CO2 Amount Captured (Gg CO2)	CO2 Emission (Gg CO2)	ins Fa		CH4 En	+50) nissions CH4)		0 Emi Facto kg N2O	ssion xr	N2O Emissi (Gg N20)	
02 Emission	Amount Captured	CO2 Emission	rns Fa (kg C	CH4 mission ictor	CH4 En (Gg	nissions	0	Facto	ssian)r //TJ)	N2O Emissi	
D2 Emission Factor kg CO2/TJ)	Amount Captured	CO2 Emission (Gg CO2) CO2-C*EF	rns Fa (kg C	CH4 mission ictor :H4/TJ)	CH4 En (Gg	nissions CH4) -C*EF	0	Facto (g N2O	ssian)r //TJ)	N2O Emissio (Gg N20) N2O+C*El	
D2 Emission Factor og CO2/TJ) EF(CO2)	Amount Captured (Gg CO2) Z	CO2 Emission (Gg CO2) CO2-C*EF	rns Fa (kg C	CH4 mission ictor :H4/TJ)	CH4 En (Gg CH4 (CH4	nissions CH4) -C*EF	0	Facto kg N2O EF(N2	ssian)r //TJ)	N2O Emissio (Gg N20) N2O=C*El (N2O)/10 ⁴	
2 Emission Factor g CO2/TJ) EF(CO2)	Amount Captured (Gg CO2) Z	CO2 Emission (Gg CO2) CO2-C*EF (CO2)/10*6-3	rns Fa (kg C z EF(d Unit	CH4 mission ctor :H4/TJ) (CH4)	CH4 En (Gg CH4 (CH4	nissions CH4) -C*EF	0	Facto kg N2O EF(N2	ssion pr I/TJ) O)	N2O Emissio (Gg N20) N2O=C*El (N2O)/10 ⁴	

CBIT-GSP CLIMATE TRANSPARENCY UN 💮

UN 💮

Entering Data in the Fuel Combustion Section

If you have specific values for each column, you can input them. Otherwise, you can select the default values and finally, click the "Save" button.

Tier 1 approach is used in this example

Isumption CO2 Emissions CH4 Emissions N2O Emissions (Gg CO2) (Gg CH4) (Gg N2O)	Fuel Combustion Activities Fuel Combustion Emissions Uncertainties for Liquid Fuels Equation 2.4 Liquid Fuels Uncertainties for Liquid Fuels Equation 2.4 Subdivision Fuel CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N2O Emissions (Gg N20) Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CH2) N2O Emissions (Gg N20) Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CH4) N2O Emissions (Gg N20) Subdivision Fuel TC CO2 CH4 Emissions (Gg CH4) N2O Subdivision F A TC CO2 CH4 Emissions (Gg CH4) N2O Subdivision plant-01 Crude Oil A TC CO2 CH4 N2O	gory: Fuel Combustion Activities ategory: 1A.1.a.i - Electricity Generation t: Fuel Combustion Emissions Type Liquid Fuels v Uncertainties for Liquid Fuels Liquid Fuels V Uncertainties for Liquid Fuels Subdivision Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N2O Emissions (Gg N20) Electricity generation plant-01 Crude Oil Avv TC CO2 CH4 N2O		tion Data Fuel Combu	stion Emissions						
Isumption CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) (Gg N20) CC CO2 CH4 N2O 4500 0 0 0	IA1ai-Bectricity Generation Fuel Combustion Emissions Idquid Fuels V Uncertainties for Liquid Fuels Eliquid Fuels V Uncertainties for Liquid Fuels Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 ectricity generation plant-01 Crude Oil 4500 0 0 0	ategory: 1.A.1.a.i - Bectricity Generation t: Fuel Combustion Emissions Type Liquid Fuels v Uncertainties for Liquid Fuels Fuel V Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) Electricity generation plant-01 Crude Oil 4500 0 0	ctor:		tiuitice						20
Isumption CO2 Emissions CH4 Emissions N2O Emissions (Gg CO2) CO2 CO2 CH4 M2O 4500 0 0 0	Fuel Combustion Emissions Liquid Fuels Uncertainties for Liquid Fuels Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 S AV F AV TC CO2 CH4 N20 S AV F AV TC CO2 CH4 N20	t: Fuel Combustion Emissions Type Liquid Fuels Uncertainties for Liquid Fuels Equation 2.4 Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AT F AT TC CO2 CH4 N20 Electricity generation plant-01 Crude Oil AT TC CO2 CH4 N20	-								
Isumption CO2 Emissions CH4 Emissions N2O Emissions (Gg CO2) CO2 CO2 CH4 M2O 4500 0 0 0	Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 schricity generation plant-01 Crude Oil 4500 0 0 0	Type Liquid Fuels Uncertainties for Liquid Fuels Fuel Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 Electricity generation plant-01 Crude Oil AV TC CO2 CH4 N20	et:								
Isumption CO2 Emissions CH4 Emissions N2O Emissions (Gg CO2) CO2 CO2 CH4 N2O 4500 0 0 0	Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 schricity generation plant-01 Crude Oil 4500 0 0 0	Equation 2.4 Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S A T F A T CO2 CH4 N20 Electricity generation plant-01 Crude Oil 4500 0 0 0	a	And a second second							
Isumption CO2 Emissions CH4 Emissions N2O Emissions (Gg CO2) CO2 CO2 CH4 N2O 4500 0 0 0	Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 ectricity generation plant-01 Crude Oil 4500 0 0 0	Subdivision Fuel Total consumption (TJ) CO2 Emissions (Gg CO2) CH4 Emissions (Gg CH4) N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 CH4 Emissions N20 Emissions (Gg N20) S AV F AV TC CO2 CH4 N20 Electricity generation plant-01 Crude Oil 4500 0 0 0	Type	Liquid Fuels	∼ Ur	ncertainties for Liquid Fuels					
Gg CO2) (Gg CH4) (Gg N20) CC CO2 CH4 N2O 4500 0 0 0	Subdivision Fuel (TJ) (Gg CO2) (Gg CH4) (Gg N20) S AV F AV TC CO2 CH4 N2O ectricity generation plant-01 Crude Oil 4500 0 0	Subdivision Fuel (TJ) (Gg CO2) (Gg CH4) (Gg N20) S AV F AV TC CO2 CH4 N2O Electricity generation plant-01 Crude Oil 4500 0 0 0						Equation 2.4			
CO2 CH4 N2O 4500 0 0 0	S AV F AV TC CO2 CH4 N2O ectricity generation plant-01 Crude Oil 4500 0 0 0	S AV F AV TC CO2 CH4 N2O Electricity generation plant-01 Crude Oil 4500 <		Subdivision		Fuel		Total consumption			
4500 0 0	ectricity generation plant-01 Crude Oil 4500 0 0	Electricity generation plant-01 Crude Oil 4500 0 0		Subdivision				(TJ)	(Gg CO2)	(Gg CH4)	(Gg N20)
		otal					ΔV		CO2	CH4	N2O
4500 0 0	4500 0 0			ricity generation plant-0	01 Crude Oi	il		4500	0	0	
4500 0 0			Total								
								4500	0	0	
								4500	0	0	

Entering Data in the Fuel Combustion Section

This is how the first entry looks once you're done. You'll follow the same steps to add new entries under electricity generation.

Fuel Co Worksh	nsumption Data Fuel Combustion Emis	sions					
Sector Catego Subca Sheet Data	r: Energy ory: Fuel Combustion Activities tegory: 1.A.1.a.i - Electricity Generatio : Fuel Combustion Emissions						2010
Fuel	Type Liquid Fuels ~	Uncertainties for Liquid Fuels					
				Equation 2.4			
	Subdivision	Fuel		Total consumption (TJ)	CO2 Emissions (Gg CO2)	CH4 Emissions (Gg CH4)	N2O Emissions (Gg N20)
	S 🛆	⊽ F	۵V	TC	CO2	CH4	N2O
.	Electricity generation plant-01	Crude Oil		4500	329.85	0.0135	0.0027
To	otal						
				4500	329.85	0.0135	0.0027

1.A.1.a.i - Electricity Generation

Step 01: Open the Worksheet 1: Fuel Consumption Data.

Step 02: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Gas –fired Plant-01	
Fuel Type	Gaseous Fuels	
Fuel	Natural Gas(Dry)	
Consumption	10,000	User defined
Consumption Unit	Gg (Auto CF)	Selection

Step 03: Save entered data

1.A.1.a.i - Electricity Generation

Step 04: Open the Worksheet 2: Fuel Combustion Emissions

Step 05: Enter following data accordingly

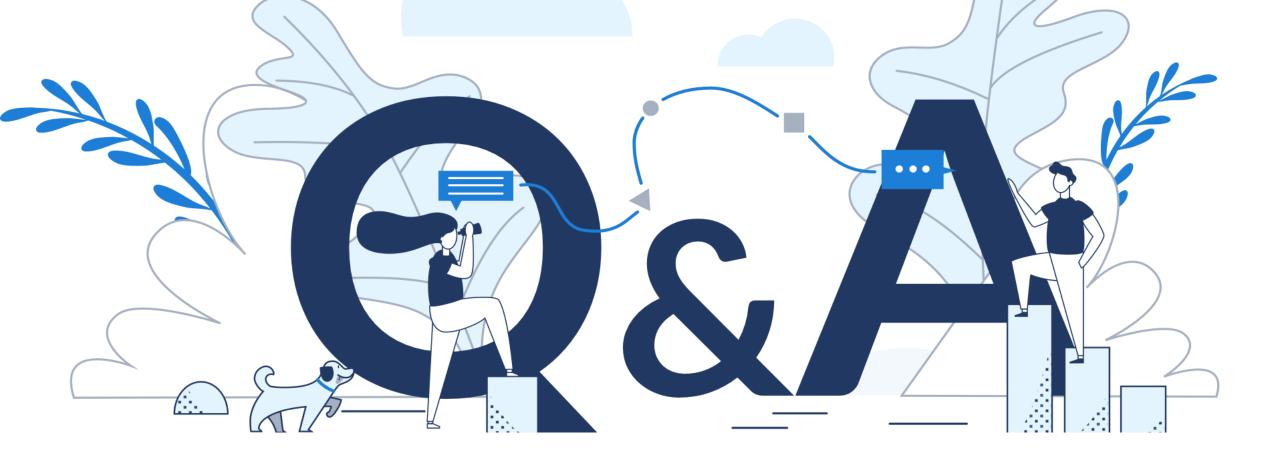
Input parameter	Entry	Note
Type of Technology	Gas –fired Plant-01	
Technology penetration	100%	
CO ₂ Emission factor	56100 kgC0 ₂ /TJ	Default
Amount Captured	0	
CH ₄ Emission factor	1 kgCH ₄ /TJ	Default
N ₂ 0 Emission factor	0.1 kgN ₂ 0/TJ	Default

Step 06: Save entered data

Exercise-01 Cont.

Fuel Consumption data

Data Fuel Type Gaseous Fuels	\checkmark							
		Equation 2.4						
Subdivision	Fuel	Consumption Unit	Consumption (Mass, Volume or Energy Unit)	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)			
S A7	7 F Δ 🖓	U V	С	CF	TC = C * CF			
Gas -fired Plant-01	Natural Gas (Dry)	Gg (Auto CF)	10000	48	480000		2	X
*								
Total								
					480000			


Exercise-01 Cont.

Fuel Combustion data

					Equ	uation 2.4						
	Subdivision Fi				nsumption [J)		CO2 Emissions C (Gg CO2)			N2O Emissions (Gg N20)		
	S	ΔV	F	Δγ	-	гс	CO2		CH4		N2O	
	Gas -fired Plant-01	Natu	ral Gas (Dry)			480000		26928	0.4	48		0.0
	Technology		CO2		CH4		N2O					
	Type of Technology	Technology penetration (%)	Consumptio n (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)		
	т	Р	C=TC* (P/100)	EF(CO2)	z	CO2=C*EF (CO2)/10^6- Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6		
	Gas-Fired Plant-1	100	480000	56100	0	26928	1	0.48	0.1	0.048	2	
.	*										2	
	Total		480000			26928		0.48		0.048		

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com