Training on 2006 IPCC Guidelines for preparing National GHG Inventory

CBIT-GSP CLIMATE TRANSPARENCY environment programme

ment copenhager

GHG Inventory – Mobile combustion– Military Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

MILITARY

□ Sub-categories which can report military emissions

1.A.3.a.i – International Aviation (International bunkers)

1.A.5.b.i – Mobile (aviation component)

1.A.3.d.i – International water-borne navigation

1.A.5.b.ii – Mobile (water-borne component)

1.A.5.c – Multilateral operations

1.A.3.a.i – International Aviation (International bunkers) > Includes emissions from international military aviation

Considered as a distinct sub-category within the international military aviation

Ensure that the same definitional criteria used for international aviation are applied to international military aviation emissions

> Ensure that data are available to support the definition

1.A.5.b.i – Mobile (aviation component)

> Domestic aviation exclude the military and it should be reported under 1.A.5.b.

1.A.3.d.i – International
water-borne navigation

Include emissions from international military water-borne navigation

- Considered as a distinct sub-category within the international waterborne navigation
- Ensure that the same definitional criteria used for international waterborne navigation are applied to international military emissions
- > Ensure that data are available to support the definition

1.A.5.b.ii – Mobile (waterborne component)

Domestic water-borne navigation exclude military, and it should be reported under here

1.A.5.c – Multilateral operations

- Includes emissions from fuel delivered to the military in the country and delivered to the military of other countries.
- Emissions from fuels used for aviation and water borne navigation in multilateral operations pursuant to the Charter of the United Nations

ESTABLISHED JUNE 26, 1945

The 2006 IPCC Guidelines do not provide a distinct method for calculating military water-borne emissions

Calculations for military are done with aviation equation and water-borne navigation equation copenhagen climate centre

• Water-borne navigation equation used to estimate emissions from military water-borne emissions

Tier 1• Apply either default values or country-specific information

Water-borne navigation equation								
	Emission = \sum [Fuel Consumed _{ab} * Emission Factor _{ab}]							
Parameter	Description	Unit						
Emission	Emissions of CO_2 , CH_4 , N_2O	kg						
а	Fuel type e (diesel, gasoline, LPG, bunker, etc.)	N/A						
b	Water-borne navigation type (i.e., Ship or boat, and possibly engine type.) (Only at tier 2 is the fuel used differentiated by type of vessel so, b can be ignored at tier 1)	N/A						

consult military experts to determine the most appropriate emission factors for the country's military water-borne navigation

environment copenhagen programme climate cent

Calculation example to find emissions from military water-borne navigation

							*conversion factor is used
Fuel type	Consumption (ktoe)	Emission factor (kg/TJ)			Conversion factor (TJ/ ktoe)		in here because activity
		CO ₂	CH ₄	N ₂ O			data was given in ktoe (kilo
Diesel	78.16	72800	6.5	2.1	41.87		tonne of oil equivalents)

These EF are assumptions only for this example!

This is also an assumption for this activity

consult military experts to determine the most appropriate emission factors for the country's military water-borne navigation

Fuel type	Emissions = Fuel consumption * EF	
	CO ₂	Follow the same procedure
Diesel	Fuel consumption = 78.16 ktoe * 41.87 TJ/ ktoe =3,272.5592 TJ	to calculate CH ₄ & N ₂ O emissions
	E _{C02} =3,272.5592 TJ * 72,800 kg/TJ = 238242309.8 kg or 238.25 Gg	

• Aviation equation is used to estimate emissions from military aviation and military emissions comes under multilateral operations

Aviation equation

Emissions = Fuel Consumption * Emission Factor

- Default emission factors for civil aircraft should be used for military aviation unless better data are available
- Default fuel consumption factors for military aircraft are given in IPPC guideline >> Volume 2 >>

Chapter 3

TABLE 3.6.7 FUEL CONSUMPTION FACTORS FOR MILITARY AIRCRAFT									
Group Sub- group Representative type Fuel flow(kg/									
Combat	Fast Jet – High Thrust	F16	3 283						
	Fast Jet – Low Thrust	Tiger F-5E	2 100						
Trainer	Jet trainers	Hawk	720						
	Turboprop trainers	PC-7	120						
Tanker/transport	Large tanker/ transport	C-130	2 225						
	Small Transport	ATP	499						
Other	MPAs Maritime Patrol	C-130	2 225						
Sources: Tables 3.1 a	nd 3.2 of Gardner et. al 1998 USEPA	A, 2005)							

	TABLE 3.6.8 FUEL CONSUMPTION PER FLIGHT HOUR FOR MILITARY AIRCRAFT	
AIRCRAFT Type	Aircraft Description	FUEL USE (LITRES PER HOUR)
A-10A	Twin engine light bomber	2 331
B-1B	Four engine long-range strategic bomber. Used by USA only	13 959
B-52H	Eight engine long-range strategic bomber. Used by USA only.	12 833
C-12J	Twin turboprop light transport. Beech King Air variant.	398
C-130E	Four turboprop transport. Used by many countries.	2 956
C-141B	Four engine long-range transport. Used by USA only	7 849
C-5B	Four engine long-range heavy transport. Used by USA only	13 473
C-9C	Twin engine transport. Military variant of DC-9.	3 745
E-4B	Four engine transport. Military variant of Boeing 747.	17 339
F-15D	Twin engine fighter.	5 825
F-15E	Twin engine fighter-bomber	6 951
F-16C	Single engine fighter. Used by many countries.	3 252
KC-10A	Three engine tanker. Military variant of DC-10	10 002
KC-135E	Four engine tanker. Military variant of Boeing 707.	7 134
KC-135R	Four engine tanker with newer engines. Boeing 707 variant.	6 064
T-37B	Twin engine jet trainer.	694
T-38A	Twin engine jet trainer. Similar to F-5.	262

consult military experts to determine the most appropriate emission factors for the country's military aviation

environment programme

Calcula	ation examp	ole to fir	nd emission	s from mil	itary avi	ation u	ising t	ier 1		2004	6 IPCC defau	l+ FF	
Aircra	aft Fuel	use	Fuel type	Airtime	IPC emis	IPCC default		Conversion factor (TI/		2000			
type	e (kg/l	iour)		(hours)	(kg/TJ)		Gg)			TABLE 3.6. CO ₂ EMISSION FA		
					CO ₂	CH4	N_2O		Fuel		Default (kg/TJ)	Lower	Upper
			Lot			1	2	44 1	Aviation Ga	isoline	70 000	67 500	73 000
C-13	0 2,2	25	kerosene	50	71500	0.5	2		Jet Kerosen	e	/1 500	69 800	74 400
											TAE Non-CO ₂ en	BLE 3.6.5 MISSION FACTORS	
	<u> </u>			Fuel	Fuel CH4 Default (Uncontrolled) N2O Default (Uncontrolled) Fuel CH4 Default (Uncontrolled) N2O Default (Uncontrolled)							N2O Default (Uncontrolled) []] Factors (in	
TABLE 3.6.7 FUEL CONSUMPTION FACTORS FOR MILITARY AIRCRAFT					for this example only.								
Group	Sub- group	Representat	tive type Fuel flow(kg/ho	our)	All fuels $\begin{array}{c c} 0.5^{\circ} & 2\\ (-57\%/+100\%)^{b} & (-70\%/+150\%)^{b} \end{array}$								
Combat	Fast Jet – Low Thrust	Tiger F-	-5E 2 100		Asr	nontio	nod in	the IPCC gui	dolino	dofaul	It FF used for	r civil a	ircrafts
Trainer	Jet trainers Turboprop trainers	Hawk PC-7	x 720 7 120		were used for this calculation also!								
Tanker/transport	Large tanker/ transport	C-130 ATP	0 2 225 499										
Other	MPAs Maritime Patrol	C-130	0 2 225		Emissions = Fuel Consumption * Emission Factor								
Sources: Tables 3.1 and 3.2 of Gardner et. al 1998 USEPA, 2005)						CO ₂							
This is from the IPCC			Iet	Fuel consumption = 2,225 kg/hour * 50 hours = 111,250 kg									
	🔵 guidelin	kero	$rac{1}{2}$ in energy units (1) = 111,250 * 10° Gg * 44.1 TJ/Gg = 4.906125 TJ										
	marked	Keru		$E_{CO2} = 4.906125 \text{ TJ} * 71500 \text{ kg/TJ} = 350787.94 \text{ kg or } 0.45 \text{ Gg}$									

Follow the same procedure to calculate CH₄ & N₂O emissions

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com