

GHG Inventory: Mobile combustion-Water Borne Navigation

Training on 2006 IPCC Guidelines for preparing National **GHG Inventory:**

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

environment programme programme

environment programme climate centu

Content

Water-borne navigation coverage in 2006 IPCC guideline

Calculation examples and exercises – Manually & using IPCC inventory tool

Emission source coverage for civil aviation

Emissions from fuels used to propel water-borne vessels, including hovercraft and hydrofoils, but **excluding fishing vessels**. The international/domestic split should be determined on the basis of port of departure and port of arrival, and not by the flag or nationality of the ship.

- According to the 2006 IPCC Guidelines it may include emissions from,
 - International water-borne navigation (International bunkers)
 - Emissions from fuels used by vessels of all flags that are engaged in international water-borne navigation.
 - Take place at sea, on inland lakes and waterways and in coastal waters.
 - Includes emissions from journeys that depart in one country and arrive in a different country.
 - Exclude consumption by fishing vessels

- Domestic water-borne navigation
 - Emissions from fuels used by vessels of all flags that depart and arrive in the same country
 - Exclude consumption by fishing vessels

Calculation examples and exercises – Manually & using IPCC inventory tool

environment e

nt copenhage

Flow of the presentation

Each sub-category contain an example and corresponding exercise to be done by you

Sub-categories with same worksheet formats have only one

example and exercise

copenhagen climate centr

• Two methodological tiers for estimating emissions of CO₂, CH₄, and N₂O

Tier 1 • App	ply either default values or country-specific information
--------------	---

Eı	mission = \sum [Fuel Consumed _{ab} * Emission Factor _{ab}]		
Parameter	Description	Unit	
Emission	Emissions of CO_2 , CH_4 , N_2O	kg	Default EF can be
а	Fuel type e (diesel, gasoline, LPG, bunker, etc.)	N/A	IPCC guideline >>
b	Water-borne navigation type (i.e., Ship or boat, and possibly engine type.) (Only at tier 2 is the fuel used differentiated by type of vessel so, b can be ignored at tier 1)	N/A	Volume 2 >> Chapter 3

environment programme climate centre

Calcula	Calculation example to find emissions from water-borne navigation in Philippines 2010, tier 1 2006, IP										5, IPCC	
Fuel type	Cons	sumption	2006 IPCC default emissio			Conversion factor					defa	ult EF
	(ktoe)	fact	tor (kg/TJ)		(TJ/ ktoe)		TABLE 3.5.2 CO ₂ EMISSION FACTORS				_
Demilar			CO_2	CH	N ₂ O			Fuel	kg/1J Default	Lower	Upper	-
Regular				4	1.20			Gasoline	69 300	67 500	73 000	-
Gasoline	78.16	Ó	69300	7	2	41.87		Other Kerosene	71 900	70 800	73 600	-
Diesel	382.6	20	74100	7	2	41.87		Residual Fuel Oil	77 400	75 500	78 800	-
Diesei	502.0	37	74100	/		41.07		Liquefied Petroleum Gases	63 100	61 600	65 600	
Fuel oil	916.7	75	77400	7	2	41.87 7		Refinery Gas	57 600	48 200	69 000	_
*	en in lete e Child		Paraffin Waxes	73 300	72 200	74 400	-					
*conversion factor is used in here because activity data was g						en in ktoe (Rh		Other Petroleum	73 300	72 200	74 400	-
tonne of oil ea	tonne of oil equivalents)							Products Natural Gas	56 100	54 300	58 300	-
	Juivaici	11057										
Dec al terr				Emissions = Fuel consumption * EF								
Fuelty	pe	CO ₂			(CH ₄	N	N ₂ O				
		Fuel const	umption = 78	.16 ktoe *								
Regular		41.87 TJ/	ktoe =3,272.5	5592 TJ	2	22907.9144 kg or	6	6545.1184 kg or 6.55*10 ⁻³ Gg				
Gasoline		$E_{CO2} = 3,27$	72.5592 TJ * 6	9300 kg/T	J = (0.023 Gg	6					
		22678835	52.6 kg or 226	5.79 Gg								

Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

Dive into the Inventory tool together and explore its features firsthand

Open the software and go to worksheets!

IPCC Inventory Software - dinukshi@climatesi - [Worksheets]

Mobile combustion related categories and sub-categories

1.A.3.d – Water-borne navigation

- Worksheets have same formats for sub-categories 1.A.3.d.i International water-borne navigation (International bunkers) and 1.A.3.d.ii Domestic water-borne navigation
 - There are 2 worksheets in each sub-category
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions

V06 IPCC Categories Tuel Consumption Data Fuel Combustion Emissions											
Image: Worksheet Image: Worksheet	temational bunkers)										
I.A.2.m - Non-specified Industry Fuel Type Liquid Fuels											
□ 1.A.3 - Transport	Equation 3.5.1										
I.A.3.a - Civil Aviation I.A.3.a.i - International Aviation (Int I.A.3.a.ii - Domestic Aviation I.A.3.b.i - Cons I.A.3.b.i - Cars I.A.3.b.i - Cars I.A.3.b.i - Cars	sel and Engine type Consumption (Mass, Volume or Energy Unit) Consumption Unit Consumption Unit Conversion (TJ/Unit) (NCV) Total consumption (TJ)										
	△♡ C U ♡ CF TC=C*CF										
I.A.3.b.ii - Light-duty trucks W1 Gas/Diesel Oil Boat	2500 Gg (Auto CF) 43 107500 📝 🛃 🎔 🗙										
1.A.3.b.ii.1 - Light-duty trucks wi											
Total											
1.A.5.D.III - neavy-duty trucks and b	107500										

1. Fuel consumptio	on data Selec	t the 'fuel'		CBI	T-GSP TRANSPARENCY	environr program	environment programme	copenhagen climate cent
Select the 'fuel type'	Fuel Name	Net Calorific Value	Carbon content (NCV)	-				
beleet the fuel type	Aviatian Canalian	(137Gg)	(Kg C / GJ)	-		Click 'sav	e' button fina	lly to
	Aviation Gasoline	44.3	19.1			covo the	information	
Fuel Tree (All fuels)	Bitumen	40.2	22			Save the	: mormation y	70u
Fuel Type (Allfuels)	Crude Oil	42.3	20				entered	
(All tuels)	qu Ethane	46.4	16.8		L		Chiereu	
Solid Fuels	Gas/Diesel Oil	43	20.2				Defeulter	
Gaseous Fuels	Jet Gasoline	44.3	19.1		Ilser-de	fined	Default or	
Other Fossil Fuels	Jet Kerosene	44.1	19.5		USCI UC	micu	user-defined	
Vehicle Biomass - solid Biomass - liquid	ti Liquefied Petroleum Ga	see /7.3	17.2		param	eter	user-uenneu	
Biomass - gas	Eigleined Petroleum Ga	505 47.3	17.2 ¥		P		parameter	
Biomass - other					1 ,			-
			The user n	nust enter		Gg (Auto CF)		
			The user h			(Manual CF)		
06 IPCC Categories 🛛 📮 Fu	uel Consumption Data Fuel Com	bustion Emissions	this info	rmation				
2 c - Raihuraur	/orksheet		0.000 00	din altr				
3 d - Water-borne Navigation	ector: Energy		accord	lingly				2000
1 A 3 d i - International water-borne n	ategory: Fuel Combustion	Activities			J /			
1.A.3.d.ii - Domestic Water-borne Nav	ubcategory: 1.A.3.d.i - Internat	tional water-boine navigation	(International bunkers)					
3.e - Other Transportation S	heet: Fuel Consumption	Data						
1.A.3.e.i - Pipeline Transport	Data							
1.A.3.e.ii - Off-road	Fuel Type Liquid Fuels	\sim						
Other Sectors								
4.a - Commercial/Institutional				Equation 3.5.1				
4.b - Residential								
4.c - Agriculture/Forestry/Fishing/Fish		+		Consumption	×	Eactor	Total consumption	
1.A.4.c.i - Stationary	Subdivision	Fuel	Vessel and Engine type	(Mass, Volume or	Consumption Unit	(TJ/Unit)	(TJ)	
1.A.4.c.ii - Off-road Vehicles and Othe				Energy Unit)		(NCV)		
1.A.4.c.iii - Fishing (mobile combustio								
Non-Specified	S AV	F ∆⊽	$\Delta \nabla$	С	U	∀ CF	TC = C * CF	
5.a - Stationary	All	as/Diesel Oil	Passenger vessel	16031.6043	TJ		1 16031.6043 📝	
5.b - Mobile	▶ All N	lotor Gasoline	Passenger vessel	3272.5592	TJ		1 3272.5592 📝	a 🤊 🗴
1.A.5.b.i - Mobile (aviation component	All	Residual Fuel Oil	Passenger vehicle	38384.3225	TJ		1 38384.3225 📝	
1.A.5.b.ii - Mobile (water-borne comp	*						2	
1.A.5.b.iii - Mobile (Other)	Total							
5.c - Multilateral Operations	r ordar						57000 400	

copenhagen climate centre

Let's do an example with the inventory tool!

Exercise 1: Water-borne navigation

Activity 01

Step 01: Open the worksheet fuel consumption data of either 1.A.3.d.i – International water-borne navigation (International bunkers) or 1.A.3.d.ii – Domestic water-borne navigation

Step 02: Select the fuel type as liquid fuels

Input parameter	Entry	Note
Subdivision	District A	
Fuel	Gas/ diesel oil	
Vessel and engine type	Boat	
Consumption	250 Gg (Auto CF)	

*the activity data used in this activity is not real. Just an assumption only for this activity.

Step 03: Open the worksheet Fuel combustion emissions

Step 04: Select the fuel type as liquid fuels

Step 05: Open the dialog box for uncertainties for liquid fuels and enter following data accordingly

Entry pa	Entry						
Activity data uncertainties	Upper	+5.00%					
	Lower	-5.00%					
Emission factors uncertainties							
Select the gas as Carbon dioxide and enter following data (*when you are entering data for real GHG inventory calculation, please make sure to enter uncertainties for other gases also)							
	Upper	+4.30%					
	Lower	-3.53%					

*these values are not real. Just an example only for this activity.

Step 06: Enter following data accordingly in the opened worksheet

Input parameter	Entry	Note
CO ₂ emission factor	Default value, 74100	You can use specific values also. But please use the default value for this activity.
Amount captured	0 (Zero)	
CH ₄ emission factor	Default value, 7	You can use specific values also. But please use the default value for this activity.
N ₂ O emission factor	Default value, 2	You can use specific values also. But please use the default value for this activity.

*the activity data used in this activity is not real. Just an example only for this activity.

Step 07: Save entered data

UN 🎯 environment programme

copenhagen climate centre

Fuel consumption data

Sector: Category: Subcategory Sheet:	Energy Fuel Combust r: 1.A.3.d.i - Inte Fuel Consum	tion Activities emational water-borne n ption Data	avigation (International bunkers)						2	.02
Fuel Type	Liquid Fuels	~								
				Equation 3.5.1						
Sub	division	Fuel	Vessel and Engine typ	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)			
5	5 AV	F		∀ C	U V	CF	TC = C * CF			
District A	λ.	Gas/Diesel Oil	Boat	250	Gg (Auto CF)	43	10750	2		っ
								12		

environment programme

UN 🏵 environment copenhagen climate centre programme

Uncertainties for liquid fuels

 \times Uncertainties by Fuel Type Liquid Fuels 1.A.3.d.i - International water-bome navigation (International bunkers) Category Sheet Fuel Combustion Emissions Activitiy Data Uncertainties +5.00 % ≑ -5.00 % ≑ Lower Upper **Emission Factors Uncertainties** Gas CARBON DIOXIDE (CO2) \sim -3.53 % 🖨 +4.30 % ≑ Lower Upper OK Cancel

0.07525

environment programme

0.0215

t copenhagen climate centre

Fuel combustion emissions

Total

uel Consumption D	ata Fuel Combustio	on Emissions											
Vorksheet Sector: Category: Subcategory: Sheet: Data	Energy Fuel Combustion Activi 1.A.3.d.i - International Fuel Combustion Emiss	ties water-borne navig ions	gation (Internat	ional bunkers)							20)2(כ
Fuel Type Liqui	d Fuels	~	Uncertainties f	or Liquid Fuels E	Equation 3.5.1	1							
	Fuel consump	otion			CO2		CH4	4	N2C				
Subdivision	Fuel	Vessel and Engine type	lotal tuel consumptio n (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)			
s ar	7 F ΔV	VT AV	С	EF(CO2)	Z	CO2=C*EF (CO2)/10^6 -Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6			
District A	Gas/Diesel Oil	Boat	10750	74100	0	796.575	7	0.07525	2	0.0215	2		5

796.575

10750

copenhagen climate centre

OTHER TRANSPORTATION

• 1.A.3.e – Other transportation

• The worksheet format is different in 2 sub-categories 1.A.3.e.i – Pipeline transport and 1.A.3.e.ii – Off-

road	road Two worksheets in sub-category 1.A.3.e.i – Pipeline transport 1. Fuel consumption data 2. Fuel combustion emissions								Three worksheets in sub-category 1.A.3.e.ii – Off-road 1. Fuel consumption data			
Fuel Consumption Data Fuel Consumption Worksheet Sector: Energy Category: Fuel Combustion Subcategory: 1.A.3.e.i - Pipe Sheet: Fuel Consumption Data Fuel Type Liquid Fuels	ombustion Emissions on Activities line Transport ion Data						 Fuel cor Tier 1 a Fuel cor Fuel cor Tier 3 	nbustio nd Tier nbustio	n emissic 2 n emissic	ns – ns –		
			Equation 2.4									
Subdivision S 2 * Total	Fuel	Fuel Consumption Data Fu Worksheet Sector: Energy Category: Fuel Coml Subcategory: 1.A.3.e.ii Sheet: Fuel Cons Data Fuel Type Liquid Fuels	el Combustion Emission bustion Activities Off-road sumption Data	s Fuel Combustion Er	nissions - Tier 3					2020		
					Equation 3.3.1,	3.3.2						
1		Subdivision	Source	Fuel	Vehicle / Equipment	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)			
		S 47	SRC ⊿⊽	F AV	<u>۵</u> ۷	C	U V	CF	TC = C * CF	2		
		i otal							0			

1.A.3.e.i – Pipeline transpo	rt Selec	t the 'fuel'						
1. Fuel consumption data	Fuel Name	Net Calorific Value (TJ / Gg)	Carbon co (kg	ontent (NCV) ^ C / GJ)				
Select the 'fuel type'	Aviation Gasoline	44.3		19.1				
Select the fuel type	Bitumen	40.2		22				
	Crude Oil	42.3		20				
	Ethane	46.4		16.8			Clials	(20110)
(All fuels)	Gas/Diesel Oil	43		20.2			CIICK	save
Liquid Fuels	Jet Gasoline	44.3		19.1			button f	inally to
Solid Fuels	Jet Kerosene	44.1		19.5				
Other Fossil Fuels	Liquefied Petroleum Gases	47.3		17.2 🗸			save	the
Vehicle Biomass - solid	· · · · · ·					Default	1 information	tion you
Biomass - gas						Delaut		
Biomass - other			I	User-define	ed p	arameter	ente	ered
CC Categories Fuel	onsumption Data Fuel Comb	ustion Emissions		parameter				
 1.A.2.g - Transport Equipment 1.A.2.h - Machinery 1.A.2.i - Mining (excluding fuels) and Q 1.A.2.j - Wood and wood products 1.A.2.k - Construction 1.A.2.l - Textile and Leather 1.A.2.m - Non-specified Industry Worksh Sector Worksh Sector Catego Subcatego Su	r: Energy pory: Fuel Combustion A ategory: 1.A.3.e.i - Pipeline : Fuel Consumption Type Liquid Fuels	ctivitids Transport Data						2020
1.A.3 - Transport				Ea	uation 2.4			
T.A.3.a - Civil Aviation 1.0.3 a i - International Aviation (Int								
1 A 3 a ii - Domestic Aviation				Consumption		Conversion Factor		
□ 1.A.3.b - Road Transportation	Subdivision	Fuel		(Mass, Volume or	Consumption Unit	(TJ/Unit)	Total consumption	
🖻 1.A.3.b.i - Cars				Energy Unit)		(NCV)	(10)	
	S ∆⊽	F	Δγ	С	U	√ CF	TC = C * CF	
⊡ 1.A.3.b.ii - Light-duty trucks	Inspecified	Gas/Diesel Oil		700	Gg (Auto CF)	43	30100	2 🛃 🍠 🗙
1.A.3.b.ii.1 - Light-duty trucks wi								2
Total								
1.A.3.D.III - Heavy-duty trucks and D							30100	

2. Fuel combustion emissions

Uncertainties by Fuel Type

User-defined parameter

 \times

Enter

copenhagen climate centre

Let's do an example with the inventory tool!

Exercise 5: Other transportation

Activity 01

Step 01: Open the worksheet fuel consumption data of 1.A.3.e.i – Pipeline transport

Step 02: Select the fuel type as liquid fuels

Step 03: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	Unspecified	
Fuel	Gas/ diesel oil	
Consumption	70 Gg (Auto CF)	

**the activity data used in this activity is not real. Just an example only for this activity.*

Step 04: Save entered data

Step 05: Open the worksheet Fuel combustion emissions

Step 06: Select the fuel type as liquid fuels

Step 07: Open the dialog box uncertainties for liquid fuels and enter following data accordingly

Entry pa	Entry	
Activity data uncertainties	Upper	+5.00%
	Lower	-5.00%
Emission factors uncertainties		

Select the gas as Carbon dioxide and enter following data

(*when you are entering data for real GHG inventory calculation, please make sure to enter uncertainties for other gases also)

Upper	+5.00%
Lower	-5.00%

**these values are not real. Just an example only for this activity.*

copenhagen climate cent

Step 08: Enter following data accordingly in the opened worksheet

Input parameter	Entry	Note
CO ₂ emission factor	Default value, 74100	You can use specific values also. But please use the default value for this activity.
Amount captured	0 (Zero)	
CH ₄ emission factor	Default value, 3	You can use specific values also. But please use the default value for this activity.
N ₂ 0 emission factor	Default value, 0.6	You can use specific values also. But please use the default value for this activity.

*the activity data used in this activity is not real. Just an example only for this activity.

Step 09: Save entered data

environment programme

t copenhagen climate centre

Fuel consumption data

Data									
Fuel Type Lic	uid Fuels	~							
				Eq	uation 2.4				
		Fuel	(Consumption (Mass, Volume or	Consumption Unit	Conversion Factor (TJ/Unit)	Total consumption (TJ)		
Subo	IVISION			Energy Unit)		(140 V)			
Subo	Nision ∆ ⊽	F	۵V	Energy Unit) C	U 7	CF	TC = C * CF		

copenhagen climate centre

I	Incertainties	for	liquid	fuel	S
	Juctitanities	101	nquiu	Iuci	J

Uncertainties by Fuel Type $ imes$											
Liquid Fuels											
Category Sheet Activitiy Data Lower	1.A.3.e.i - Pipeline Transport Fuel Combustion Emissions Uncertainties -5.00 % 🜩	Upper	+5.00 % 🜩								
Emission Fact Gas Lower	CARBON DIOXIDE (CO2)	Upper	+5.00 % 🜩								
ОК			Cancel								

environment programme climate centre

Fuel combustion emissions

Fuel Consump Worksheet	tion Data	Fuel Combus	tion E	missions									
Sector: Category: Subcategory Sheet: Data	Ene Fuel : 1.A. Fuel	rgy Combustion Acti 3.e.i - Pipeline Tr Combustion Emi	ivities anspo ssions	rt								202	0
Fuel Type	Liquid Fu	iels		∼ Ur	ncertainties for Liquid	d Fuels							
						Equa	ation 2.4						
	Fu	el consumption				CO2		CH4	ļ.	N2O			
Subdivis	ion	Fuel		Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)		
s	۵Ţ	F	۵Ţ	с	EF(CO2)	z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6		
Unspecif	ied	Gas/Diesel Oil		3010	74100		223.041	3	0.00903	0.6	0.00181	2 🖬	2
Total				0040			000.044		0.00000		0.004.04		
L				3010			223.041		0.00903		0.00181		

1.A.3.e.ii - Off-road

copenhagen climate centre

Let's do an example with the inventory tool!

1.A.4.c.ii – Off-road vehicles and other machinery

- Worksheets have same format as in sub-category 1.a.3.ii.e Off-road
 - There are 3 worksheets
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions

Tier 01

Tier 1									
Emission = \sum_{j} [Fuel * Emission Factor]									
Parameter	Unit								
Emission	Emissions	kg							
Fuel _j	Fuel consumed								
EF _j	Emission factor	Kg/TJ							
j	Fuel type	N/A							

Tier 1 approach use fuel-specific default emission factors

Default EF can be obtained from 2006 IPCC guideline >> Volume 2 >> Chapter 3

environment programme

2006, IPCC

environment programme

Calculation example to find emissions from off-road vehicles and other machinery in Philippines 2010, tier 1

Off-road source	Fuel type	Consumption (ktoe)	200 emiss	2006 IPCC default emission factor (kg/TJ)		Conversion factor (TJ/ ktoe)
			CO ₂	CH ₄	N ₂ 0	
Agri crop products	Regular gasoline	0.21	69300	80	2	41.87
1	Kerosene	0.25				41.87
	Diesel	11.91	74100	4.15	28.6	41.87
Livestock/ poultry	Regular gasoline	0.02	69300	80	2	41.87
	Diesel	1.15	74100	4.5	28.6	41.87
	Fuel oil	4.24				41.87
Agri services	Regular gasoline	0.01	69300	80	2	41.87
	Kerosene	0.16				41.87
	Diesel	3.75	74100	4.15	28.6	41.87
	Fuel oil	1.30				41.87

					d	efa	ult I	EF	
	DE	FAULT EMI	SSION FACT	T ORS FOR O	ABLE 3.3.1 FF-ROAD MO	BILE SOURCI	JACHIN	ERY ^(a)	
		CO2			СН4(р)			N2O (*)	
ff- load ource	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper
					Diesel				
riculture	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8
estry	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8
ustry	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8
usehold	74 100	72 600	74 800	4.15	1.67	10.4	28.6	14.3	85.8
				Motor C	asoline 4-	stroke			
riculture	69 300	67 500	73 000	80	32	200	2	1	6
estry	69 300	67 500	73 000						
ustry	69 300	67 500	73 000	50	20	125	2	1	6
uschold	69 300	67 500	73 000	120	48	300	2	1	6
				Motor G	asoline 2-	Stroke			
riculture	69 300	67 500	73 000	140	56	350	0.4	0.2	1.2
estry	69 300	67 500	73 000	170	68	425	0.4	0.2	1.2
ustry	69 300	67 500	73 000	130	52	325	0.4	0.2	1.2
usehold	69 300	67 500	73 000	180	72	450	0.4	0.2	1.2

The EF not available in YELLOW color cells are not in IPCC default

EFs. Therefore, those values can be taken from Literatures, National institutes or can develop those EF with expert consultations etc.

*a conversion factor is used in here because activity data was given in ktoe (kilo tonne

of oil equivalents)

Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

Off-road	Eucleture	Emissions = Fuel consumption * EF						
source	Fueltype	CO ₂	CH ₄	N ₂ O				
Agri crop products	Regular gasoline	Fuel consumption = 0.21 ktoe * 41.87 TJ/ ktoe = 8.7927 TJ E _{CO2} = 8.7927 TJ * 69300 kg/TJ = 609334.11 kg or 0.61 Gg	$E_{CH4} = 8.7927 \text{ TJ *}$ 80 kg/TJ = 703.416 kg or 0.71 * 10 ⁻³ Gg	$E_{N20} = 8.7927 \text{ TJ} * 2$ kg/TJ = 17.5854 kg or 0.018*10 ⁻³ Gg				

Calculations for other off-road sources also do same as this way. Only the EF will change accordingly

If CO_2 captured, the captured amount must subtract from the total CO_2 emissions to get net CO_2 emissions

1.A.4.c.iii – Fishing (mobile combustion)

- Worksheets have same formats as in sub-categories 1.A.3.d.i International water-borne navigation (International bunkers) and 1.A.3.d.ii Domestic water-borne navigation
 - There are 2 worksheets in each sub-category
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions

• Two methodological tiers for estimating emissions of CO₂, CH₄, and N₂O

Water-borne navigation equation									
Emission = \sum [Fuel Consumed _{ab} * Emission Factor _{ab}]									
Parameter	Description		Unit						
Emission	Emissions of CO_2 , CH_4 , N_2O	kg							
а	Fuel type e (diesel, gasoline, LPG, bunker, etc.)	N/A							
b	Water-borne navigation type (i.e., Ship or boat, and possibly engine type.) (Only at tier 2 is the fuel used differentiated by type of vessel so, b can be ignored at tier 1)	N/A	Ι						

Default EF can be obtained from 2006 IPCC guideline >> Volume 2 >> Chapter 3

environment programme clima

Calculation example to find emissions from water-borne navigation in Philippines 2010, tier 1									2006, IPCC			
Fuel type	Consumption	2006 IPCC default emiss		ission	ssion Conversion factor		Turrada		default EF		EF	
				(IJ/ KOE)								
Regular Gasoline		CO_2	CH	N_2O			Fuel	kg/TJ Default	Lower	Upper		
							Gasoline	69 300	67 500	73 000		
	1.49	69300 7 2		2	41.87		Other Kerosene	71 900	70 800	73 600		
Kerosene	1.26	71900	7	2	41.87		Gas/Diesel Oil Residual Fuel Oil	74 100	72 600 75 500	74 800		
							Liquefied Petroleum G	ðases 63 100	61 600	65 600		
Diesel	241.14	74100	7	2	41.87		Refinery Gas	57 600	48 200	69 000		
Fuel oil	15 55	77400	7	2	A1 87		Paraffin Waxe	s 73 300	72 200	74 400		
rueron	15.55	//+00	/	2	11.07		O Other Petroleu	m 73 300	72 200	74 400		
a conversion factor is used in here because activity data was given				in ktoe (kilo tonne of oil equivalents)		Products Natural Gas	56 100	54 300	58 300			
							[]	
Fuel type	Emissions = Fuel consumption * EF								TABLE 3.5.3 FAULT WATER-BORNE NAVIGATION CH4 AND N20 EMISSION FACTORS			
	60					NO			CH4 (kg/TJ)		N ₂ O (kg/TJ)	
						N ₂ U		Ocean coine Shins * 7		7	2	
Regular Gasoline	Fuel consumption = 1.49 ktoe * 41.87 TJ/						Occan-going Sinps		± 50%		-40%	
						*Default values derived for diesel engines using heavy fuel Source: Lloyd's Register (1995) and EC (2002)			oil.			
	ktoe = 62.3863 TJ			436.7041kg or		124.7726 kg or						
	E_{CO2} = 62.3863 TJ * 69300 kg/TJ =			0.44*10 ⁻³ Gg 0.13*		0.13*10	*10 ⁻³ Gg					
	4323370 kg or 4.33 Gg											

Source of activity data: <u>https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf</u>

1.A.5.b.i – Mobile (aviation component)

- Worksheets have same formats as in sub-categories *1.A.3.a.i International aviation* and *1.A.3.a.ii Domestic aviation*
 - Four worksheets in each sub-category
 - 1. Fuel consumption data

Tier 1

2. Fuel combustion emissions

1.A.5.b.ii – Mobile (water-borne component)

- Worksheets have same formats as in sub-categories 1.A.3.d.i International water-borne navigation (International bunkers) and 1.A.3.d.ii Domestic water-borne navigation
 - There are 2 worksheets in each sub-category
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions

1.A.5.b.iii – Mobile (Other)

- There are 5 worksheets in this sub-category
 - 1. Road: Fuel consumption data
 - 2. Road: Fuel combustion emissions
 - 3. Off-road: Fuel consumption data
 - 4. Off-road: Fuel combustion emissions
- These worksheets have same formats similar to worksheets in forementioned sub-categories

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com