

Training on 2006 IPCC Guidelines for preparing National **GHG Inventory:**

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

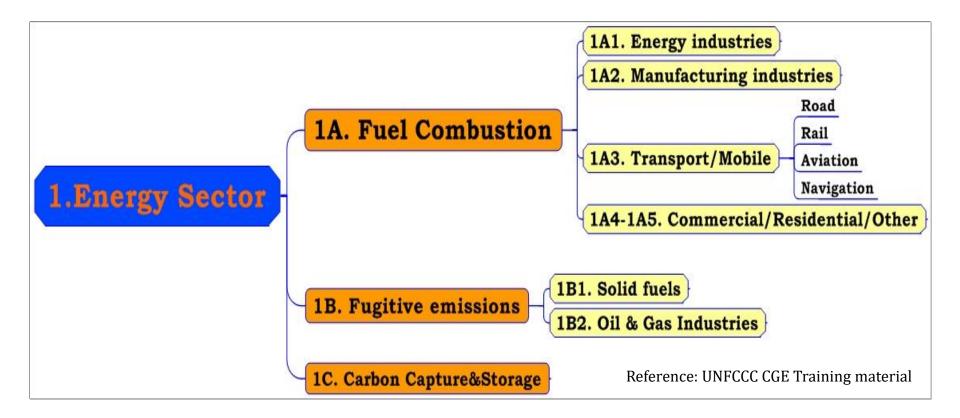
Introduction

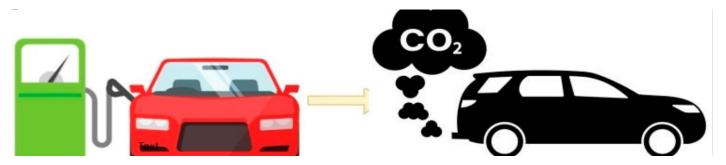
Road transportation coverage in 2006 IPCC guideline

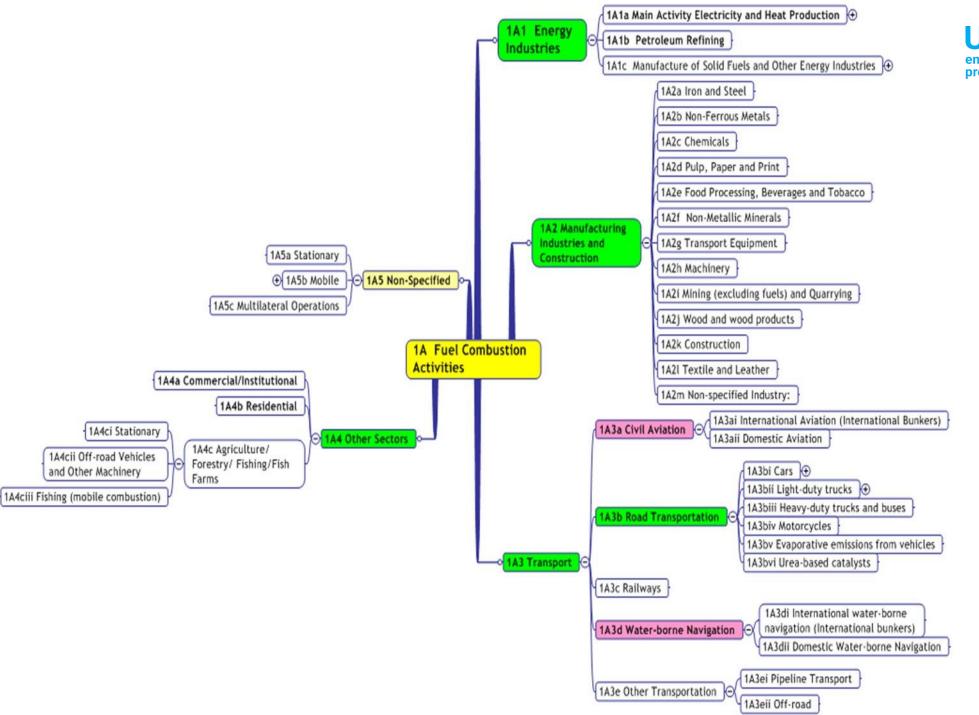
Road transportation in Philippine GHGI, 2010

Calculation examples and exercises – Manually & using IPCC inventory tool

Introduction







Total GHG emissions-2010 in the Philippines (Million tons of CO_2e)

	CO ₂	CH₄	N₂O	HFCs	Total
Energy	50.698	1.888	0.519	-	53.105
Agriculture	0.696	33.853	8.604	-	43.152
Transport	23.718	0.125	0.331	-	24.174
Waste	0.015	14.527	1.017	-	15.559
IPPU	7.564	0.009	0.019	0.771	8.363
FOLU	(37.016)	0.007	0.002	-	(37.007)
		TO	TAL		107.345

environment programme

copenhagen climate centre

1A. Fuel Combustion: CO₂

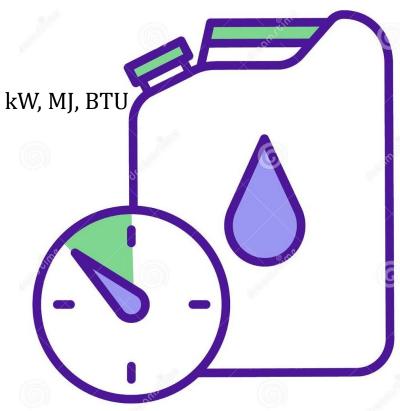
- CO_2 emissions depend almost entirely on the carbon content of the fuel, though a small amount of carbon is un-oxidized (less than 1%).
- During the combustion process, most carbon is immediately emitted as CO2 regardless combustion technology
- By default the 2006 IPCC Guidelines assume a complete combustion process (100% carbon conversion or oxidation fraction is 1)

1A. Fuel Combustion: Fuels

- **SOLID** (Coal and Coal Products)
 - including Coal, Coke and Derived Gases
- LIQUID (Crude Oil and Petroleum Products)
 - Including Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke
- **GAS** (Natural Gas)
- **OTHER FOSSIL FUELS** (Non-biomass municipal & Industrial wastes, waste oils)
- PEAT
 - treated as fossil fuel
- **BIOMASS** (Wood, Charcoal, Biofuels, Biomass fraction of MSW)
 - CO₂ emissions not included in total Energy emissions
 - ✓ See definition of fuel types in Table 1.1, Volume 2, 2006 IPCC Guidelines

Reference: UNFCCC CGE Training material

1A. Fuel Combustion: Units


The carbon content may vary considerably both among and within primary fuel types on a per mass or per volume basis. By converting to energy units this variability is reduced.

Fuel units:

- Volume: barrels (gallons), cubic feet, cubic meters, litres
- Mass: tonnes, kg
- Energy (expressed as either NCV or GCV): oil/coal-equivalent, calories, kW, MJ, BTU

The 2006 IPCC Guidelines - SI units:

- 1. Fuel Gg (TJ)
- 2. NCV TJ/Gg
- 3. Carbon content kg/GJ
- 4. CO_2 EF kg/TJ (per energy basis)

IPCC Energy Units

	NCV, TJ/Gg	Carbon Content, kg/GJ	Default CO ₂ EF, kg/TJ
Biomass (Wood)	15.6	30.5	112 000
Peat	9.76	28.9	106 000
Lignite	8.9	27.6	101 000
Anthracite	26.7	26.8	98 300
Coking Coal	28.2	25.8	94 600
Residual Fuel Oil	40.4	21.1	77 400
Diesel Oil	43	20.2	74 100
Motor Gasoline	44.3	18.9	69 300
Natural Gas	48	15.3	56 100

NCV vs. GCV

- Some statistical offices use gross calorific values (GCV)
- The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel:
 - for coal and oil, the NCV is about 5 % less than the GCV
 - for most natural and manufactured gas, the NCV is about 10 % less
- Where fuel characteristics (moisture, hydrogen and oxygen contents) are known, the 2006 IPCC Guidelines give a more precise method to convert GCV to NCV data:

NCV = GCV - 0.212H - 0.0245M - 0.008Y

M - Moisture, H - Hydrogen, Y - Oxygen, %

Reference: UNFCCC CGE Training material

- 1. Diesel burnt by:
 - > Stationary source a diesel-generator
 - ➤ Mobile source a car
- 2. Amount of diesel burnt 1 Giga-gram (or 1 201 923 litres, or 317 561 gallons)*
- 3. Assuming complete combustion

CO₂ emissions = Amount of Fuel * NCV * EF CO₂ emissions = 1 * 43 * 74 100 = 3 186 300 kg CO₂ = 3.19 Gg CO₂

Non-CO₂: CH₄ and N₂O

- Emission factors for non-CO₂ gases from fuel combustion are dependent on fuel and technology used (operating conditions, control technologies, quality of maintenance, age of equipment)
- Since the set of technologies, applied in each sector varies considerably, so do the emission factors
- Therefore it is not useful to provide default emission factors for these gases on the basis of fuels only

INDU	STRIAL SOURCE EMISSION FACTO	DRS			
		Emission t	factors ¹		
		(kg/TJ energy input)			
Basic technology	Configuration	CH ₄	N ₂ O		
Liquid Fuels	•		•		
Residual Fuel Oil Boilers		3	0.3		
Gas/Diesel Oil Boilers		0.2	0.4		
Large Stationary Diesel Oil Engines >600hp (447 kW)		r 4	NA		
Liquefied Petroleum Gases Boilers		n 0.9	n 4		
Solid Fuels	•		'		
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1	r 0.7		
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14	r 0.7		
	Dry Bottom, wall fired	0.7	r 0.5		
Other Bituminous/Sub-bituminous Pulverised	Dry Bottom, tangentially fired	0.7	r 1.4		
	Wet Bottom	0.9	r 1.4		
Other Bituminous Spreader Stokers		1	r 0.7		
Other Bituminous/Sub-bit. Fluidised	Circulating Bed	1	r 61		
Bed Combustor	Bubbling Bed	1	r 61		
Natural Gas					
Boilers		r 1	n 1		
Gas-Fired Gas Turbines ² >3MW		4	1		
Natural Gas-fired Reciprocating Engines ³	2-Stroke Lean Burn	r 693	NA		
	4-Stroke Lean Burn	r 597	NA		
	4-Stroke Rich Burn	r 110	NA		
Biomass					
Wood/Wood Waste Boilers ⁴		n 11	n 7		

Non-CO₂: CH₄ and N₂O

TABLE 3.2.2 ROAD TRANSPORT N2O AND CH4 DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES (a)								
Fuel Type/Representative Vehicle Category		CH ₄ (kg/TJ))	N ₂ O (kg /TJ)				
	Default	Lower	Upper	Default	Lower	Upper		
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11		
Motor Gasoline –Oxidation Catalyst (c)	25	7.5	86	8.0	2.6	24		
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17		
Gas / Diesel Oil (e)	3.9	1.6	9.5	3.9	1.3	12		
Natural Gas ^(f)	92	50	1 540	3	1	77		
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na		
Ethanol, trucks, US (h)	260	77	880	41	13	123		
Ethanol, cars, Brazil (i)	18	13	84	na	na	na		

Combustion Emissions – Higher Tiers

Tier 1

Amount of fuel combusted, default NCV, carbon content, CO₂ EF (complete combustion)

Emissions = AD * EF

Tier 2

Amount of fuel, country-specific NCV, carbon content and CO₂ EF (oxidation rate), N₂O EF, CH₄ EF

Tier 3

Emissions depend on fuel type used, combustion technology, operating conditions, control technology, quality of maintenance, age of the equipment used to burn the fuel – plant-specific EFs (measurements)

Road Transport

- All fuel sold in a country is included in national estimates even if a vehicle crosses a border or fuel exported in fuel tanks of vehicles
- Bio-fuels carbon removed from total and reported separately
- Carbon is also emitted from urea based catalysts and included here (not strictly combustion)
- CH₄ and N₂O strongly technology related. At higher tiers need to know technologies in fleet (especially type and proportion of catalysts)
- Caution with "fuel sold" data:
 - overlaps with off-road and potentially other sectors (e.g. agriculture)
 - blended fuels (e.g. bio-ethanol) and lubricants
 - smuggling

International bunker

Aviation and Shipping (water-borne navigation):

- Domestic emissions included in National Total
- International emissions reported separately as "Bunker Fuels"
- Domestic trips are journeys between points in one country
- International trips between countries

Waste as a Fuel

- Some waste incinerators also produce heat or power
- In such cases the waste stream will show up in national energy statistics and it is good practice to report these emissions under the energy sector
- This could lead to double counting when in the waste sector the total volume of waste is used to estimate emissions
- Only the fossil fuel derived fraction of CO₂ from waste is included in national total emissions

Reference: UNFCCC CGE Training material

Reference Approach

Reference Approach is a top-down approach, using a country's energy supply data to calculate the emissions of CO₂ from fuel combustion:

CO2 emissions = (Apparent Consumption - Excluded Carbon) * EF

Apparent consumption = Production + Import - Export - International

bunker - Stock change

- \checkmark CO₂ only
- ✓ used as a check for Sectoral Approach

copenhagen

TABLE 1.2 TYPES OF USE AND EXAMPLES OF FUELS USED FOR NON-ENERGY APPLICATIONS Type of use Example of fuel types Product/process Chapter Feedstock natural gas, oils, coal 3.2 ammonia naphtha, natural gas, ethane, propane, butane, 3.9 methanol, olefins (ethylene, gas oil, fuel oils propylene), carbon black Reductant petroleum coke carbides 3.6 coal, petroleum coke titanium dioxide 3.7 metallurgical cokes, pulverised coal, natural gas 4.2 iron and steel (primary) metallurgical cokes ferroalloys 4.3 petroleum coke, pitch (anodes) aluminium 1 44 metallurgical coke, coal lead 4.6 4.7 metallurgical coke, coal zinc lubricants Non-energy lubricating properties 5.2 product 5.3 paraffin waxes misc. (e.g., candles, coating) road paving and roofing 5.4 bitumen (asphalt) white spirit², some aromatics 5.5 as solvent (paint, dry cleaning)

Also used in secondary steel production (in electric arc furnaces) (see Chapter 4.2).

Also known as mineral turpentine, petroleum spirits, industrial spirit ('SBP').

Summary

- Energy Sector = Fuel combustion (mobile and stationary) + Fugitive emissions + CCS
- Energy emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- CO₂ emission factor depends on carbon content of fuel, non-CO₂ on the technology used
- **Methodological issues** (biomass, international bunker, excluded carbon/fuels in other sectors)
- Reference approach is used for checking (CO₂)

CBIT-GSP

☐ Sources of mobile combustion in Philippines

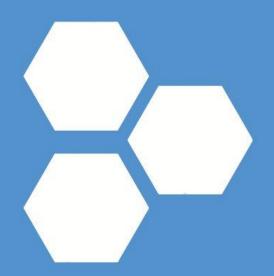
• Road transportation

Examples

- Jeepneys Diesel
- Tricycles Diesel/ kerosene
- Buses
- Water transportation
- Civil aviation
- Railways



□ According to the 2019
Refinement to the 2006 IPCC
Guidelines for National
Greenhouse Gas Inventories, no
refinements has occurred in
mobile combustion



2019 REFINEMENT

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES ON NATIONAL GREENHOUSE GAS INVENTORIES

Emission source coverage for road transportation

All combustion and evaporative emissions arising from fuels used in road vehicles, including the use of agricultural vehicles on paved roads

- · According to the 2006 IPCC Guidelines it may include emissions from,
 - Cars
 - Automobiles use for transport of persons having capacity of 12 persons or fewer
 - Light-duty trucks
 - Emissions from vehicles do transportation of light-weight cargo or which are equipped with special features such as four-wheel drive for off-road operation.
 - Gross vehicle weight ranges up to 3500-3900 kg or less

- Heavy-duty trucks and buses
 - Gross vehicle weight ranges from 3500-3900 kg or more for heavy duty trucks
 - Buses are rated to carry more than 12 persons
- Motorcycles

- Emissions from any motor vehicle designated to travel not more than 3 wheels in contact with the ground
- Weight < 680 kg
- Evaporate emissions from vehicles
 - Evaporative emissions from vehicles
 - Exclude emissions from loading fuel into vehicles
- Urea-based catalysts
 - CO₂ emissions from use of urea-based additives in catalytic converters (non-combustive emissions)

Road transportation in Philippine GHGI, 2010

2010 Philippine Greenhouse Gas Inventory Report

Executive Summary

Approaches used for data collection

☐ For GHGI, 2010 in Philippines

Screening of available data

Overall energy balance sheet - Department of Energy (DoE)

IPCC

Natural gas activity data – Natural Gas Management Division of DoE

Oil activity data – The Petroleum Resources Development Division

Activity data

- Fuel types used for Inventory calculation in GHGI, 2010
 - Premium gasoline
 - Regular gasoline
 - Diesel
 - LPG

Activity data used for road transportation in GHGI, 2010

	Coal	Natgas	Crude	PremGas	RegGas	Kero	Diesel	Fuel Oil	LPG	Jet	Avgas	Naphtha
Road Transport	-	-		2,150.05	599.47	-	4,083.94		0.01	-	-	-

Source: https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf

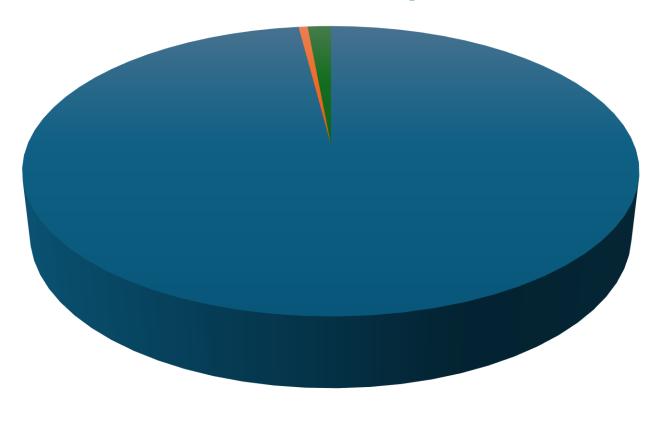
Emission factors

- Emission factors used for Inventory calculation in GHGI, 2010
 - IPCC, 1997

Example for CH₄ emission factors used for road transportation (marked in red) in GHGI, 2010

	ACTIVITY		COAL	NATURAL GAS	OIL		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES
Energy Ind	ustries		1	1 1		3		200	30
Manufactur	ring Industries & Construction		10	5	2		30	200	30
	Domestic Aviation					0.5			
	Road				Gasoline	Diesel			
Transport	Rodu			50	20	5			
	Railways		10		5				
	National Navigation		10		5				
	Commercial/Institutional		10	5	10		300	200	300
Other	Residential		300	5	10		300	200	300
Sectors	Agricultura /Farasta / Fishing	Stationary	300	5	10		300	200	300
	Agriculture/Forestry/Fishing	Mobile		5	5				

Source: IPCC (1997)



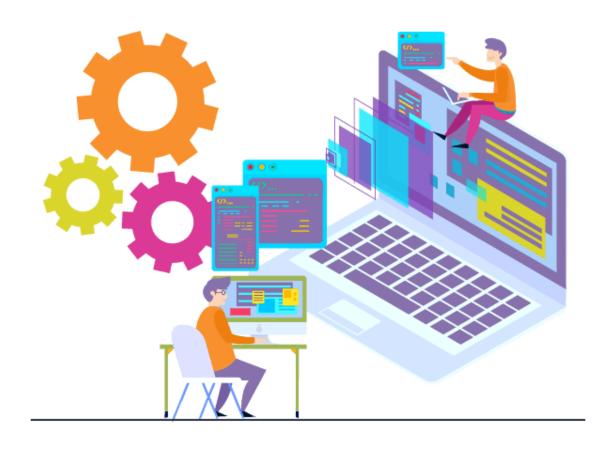
Emissions

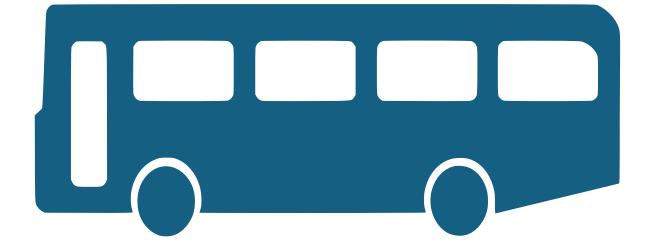
Gas	Emissions (Mt CO ₂ e)
CO_2	20.816
CH ₄	0.120
N_2O	0.308
Total	21.243

GHG emissions in Road transportation

■ CO2 ■ CH4 ■ N2O

Source: Executive Summary 2010 National GHGI Report.pdf (climate.gov.ph)


tool



ROAD TRANSPORTATION

Tier 1 approach to calculate CO₂ emissions

Emission = \sum_{a} [fuel $_{a}$ * EF $_{a}$]

Parameter	Description	Unit
Emission	Emissions of CO ₂	kg
fuel _a	Fuel sold	ТЈ
EF _a	Emission factor. This is equal to the carbon content of the fuel multiplied by 44/12.	kg/TJ
a	Fuel type	N/A

❖ Tier 1 approach use default, fuel based CO₂ emission factor

Default EF values for
Tier 1 calculations are
available in IPCC
guideline >> Volume 2
>> Chapter 3

Fuel type	Consumption (ktoe)	2006, IPCC default CO_2 emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)
PremGas	2,150.05	69,300	41.87
RegGas	599.47	69,300	41.87
Diesel	4,083.94	74,100	41.87
LPG	0.01	63,100	41.87

conversion factor is used in here because activity data is present in ktoe (kilo tonne of oil equivalents)

Fuel type	Emission = [fuel consumption * EF]
PremGas	Fuel consumption = 2,150.05 ktoe* 41.87 TJ/ktoe = 90,022.5935 TJ
	E_{CO2} =90,022.5935 TJ *69,300 kg/TJ = 6,238,565,730 kg or 6,238.57 Gg
RegGas	1,739,416,757 kg
Diesel	12,670,697,470 kg
LPG	26,419.97 kg

Source of activity data: https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf

2006, IPCC default **EF**

TABLE 3.2.1 ROAD TRANSPORT DEFAULT CO ₂ EMISSION FACTORS AND UNCERTAINTY RANGES ^a							
Fuel Type	Default (kg/TJ)	Lower	Upper				
Motor Gasoline	69 300	67 500	73 000				
Gas/ Diesel Oil	74 100	72 600	74 800				
Liquefied Petroleum Gases	63 100	61 600	65 600				
Kerosene	71 900	70 800	73 700				
Lubricants b	73 300	71 900	75 200				
Compressed Natural Gas	56 100	54 300	58 300				
Liquefied Natural Gas	56 100	54 300	58 300				

This result is correct only if any CO₂ is not recovered!

If CO₂ has captured, it should subtract from the total CO₂ emissions

	Tier 1 approach to calculate CH ₄ and N ₂ O emissions	
	Emission = \sum_{a} [fuel $_{a}$ * EF $_{a}$]	
Parameter	Description	Unit
Emission	Emissions of CO ₂	kg
fuel a	Fuel sold	TJ
EF _a	Emission factor	kg/TJ
а	Fuel type (e.g., diesel, gasoline, natural gas, LPG)	N/A

❖ Tier 1 approach use default, fuel based CH₄ and N₂O emission factors

2006, IPCC default EF

Calculation example to find CH₄ emissions from road vehicles in Philippines 2010, using tier 1 approach

Fuel type	Consumption (ktoe)	2006, IPCC default CH ₄ emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)
PremGas	2,150.05	33 (uncontrolled)	41.87
RegGas	599.47	33 (uncontrolled)	41.87
Diesel	4,083.94	3.9	41.87
LPG	0.01	62	41.87

^{*}a conversion factor is used in here because activity data was present in ktoe

(kilo tonne of oil equivalents)

taran da la companya								
TABI ROAD TRANSPORT N ₂ O AND CH ₄ DEFAULT EM	LE 3.2.2 IISSION FA	CTORS AN	D UNCER	TAINTY RA	NGES (a)			
Fuel Type/Representative Vehicle Category		CH ₄ (kg /TJ)			N ₂ O (kg /TJ)			
	Default	Lower	Upper	Default	Lower	Upper		
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11		
Motor Gasoline –Oxidation Catalyst ^(c)	25	7.5	86	8.0	2.6	24		
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17		
Gas / Diesel Oil ^(e)	3.9	1.6	9.5	3.9	1.3	12		
Natural Gas ^(f)	92	50	1 540	3	1	77		
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na		
Ethanol, trucks, US (4)	260	77	880	41	13	123		
Ethanol cars Brazil (i)	18	13	84	na	na	na		

Fuel type	Emission = [fuel a * EF a]
PremGas	Fuel consumption = 2,150.05 ktoe * 41.87 TJ/ktoe = 90,022.5935 TJ
	$E_{CH4} = 90,022.5935 \text{ TJ} * 33 \text{ kg/TJ} = 2,970,745.586 \text{ kg or } 2.98 \text{ Gg}$
RegGas	828293.6937 kg
Diesel	666878.8144 kg
LPG	25.9594 kg

Source of activity data: https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf

Calculation example to find N₂O emissions from road vehicles in Philippines 2010, using tier 1 approach

Fuel type	Consumption (ktoe)	2006 IPCC default N ₂ O emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)	Emission = [fuel consumption * EF]
PremGas	2,150.05	3.2	41.87	Fuel consumption = 2,150.05 ktoe * 41.87 TJ/ktoe = $90,022.5935$ TJ $E_{N20} = 90,022.5935$ TJ * 3.2 kg/TJ = $288,072.2992$
				kg or 0.29 Gg
RegGas	599.47	3.2	41.87	80319.38848 kg
Diesel	4,083.94	3.9	41.87	666878.8144 kg
LPG	0.01	0.2	41.87	0.08374 kg

TABLE 3.2.2 ROAD TRANSPORT N2O AND CH4 DEFAULT EMISSION FACTORS AND UNCERTAINTY RANGES (4)							
Fuel Type/Representative Vehicle Category		CH ₄ (kg /TJ)			N ₂ O (kg /TJ)		
	Default	Lower	Upper	Default	Lower	Upper	
Motor Gasoline -Uncontrolled (b)	33	9.6	110	3.2	0.96	11	
Motor Gasoline –Oxidation Catalyst (c)	25	7.5	86	8.0	2.6	24	
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17	
Gas / Diesel Oil ^(e)	3.9	1.6	9.5	3.9	1.3	12	
Natural Gas ^(f)	92	50	1 540	3	1	77	
Liquified petroleum gas ^(g)	62	na	na	0.2	na	na	
Ethanol, trucks, US (h)	260	77	880	41	13	123	
Ethanol, cars, Brazil (i)	18	13	84	na	na	na	

*a conversion factor is used in here because activity data was present in ktoe (kilo tonne of oil equivalents)

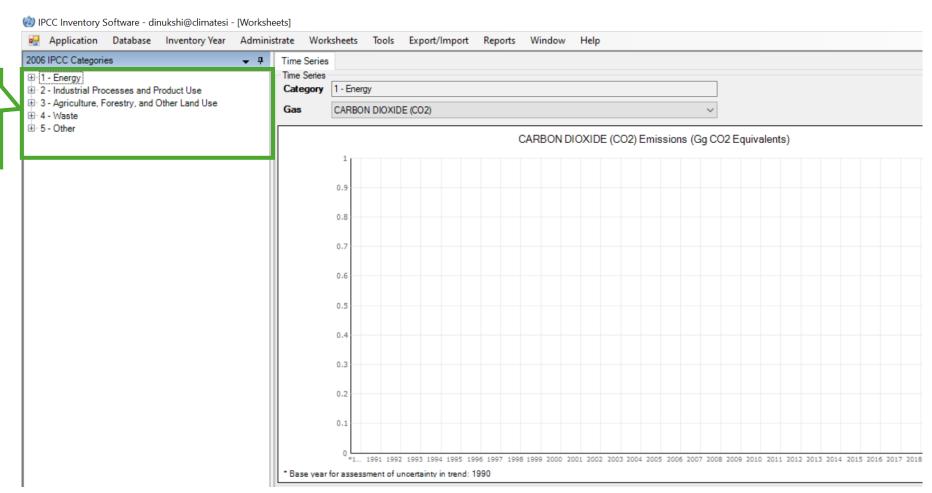
2006, IPCC default EF

Source of activity data: https://climate.emb.gov.ph/wp-content/uploads/2016/06/GHG-Manual.pdf

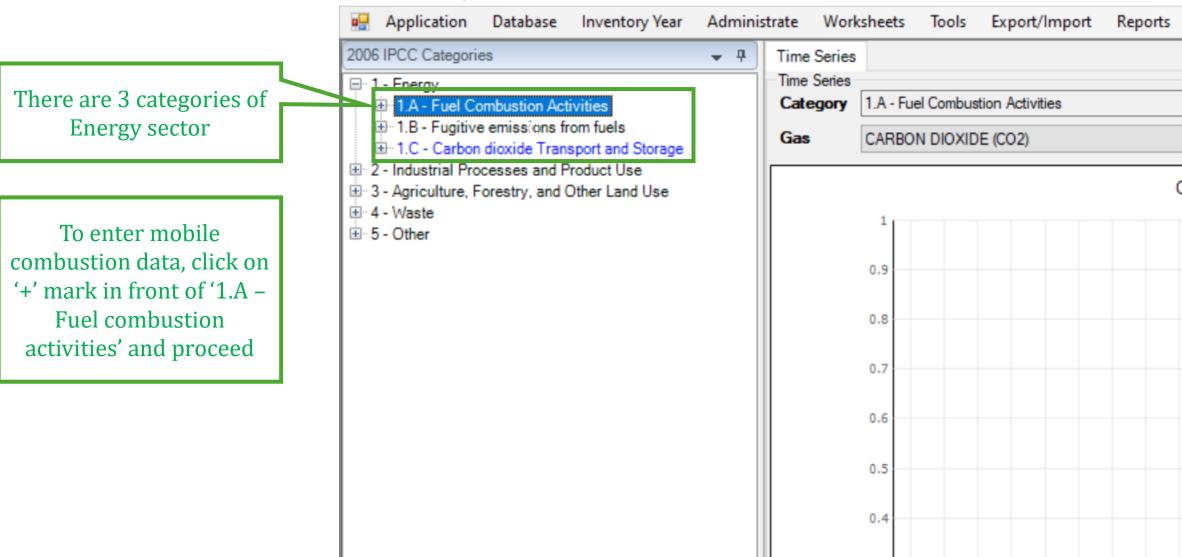
Let's start working with the software

Dive into the Inventory tool together and explore its features firsthand

Open the software and go to worksheets!


In here select the sector as 'Energy'

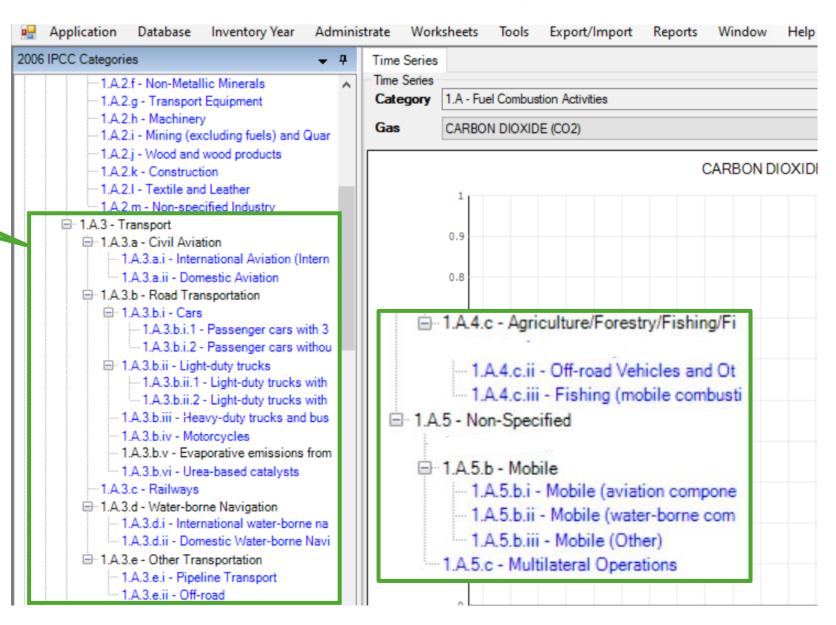
Then, click on the '+' mark in front of the Energy sector


You will be getting categories of Energy sector

CBIT-GSP

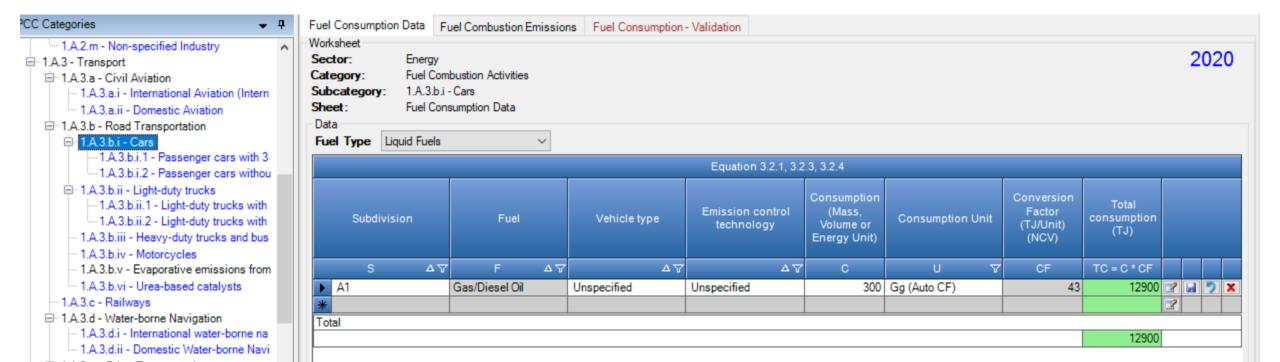
0.3

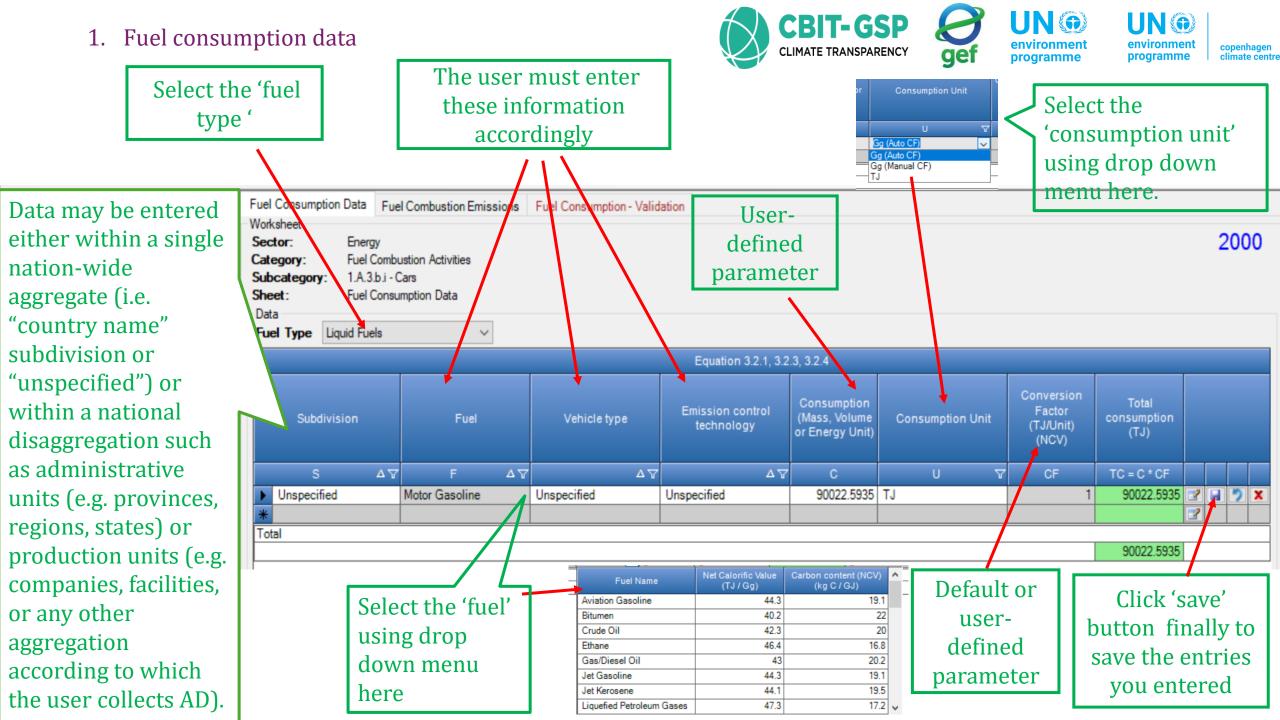
IPCC Inventory Software - dinukshi@climatesi - [Worksheets]

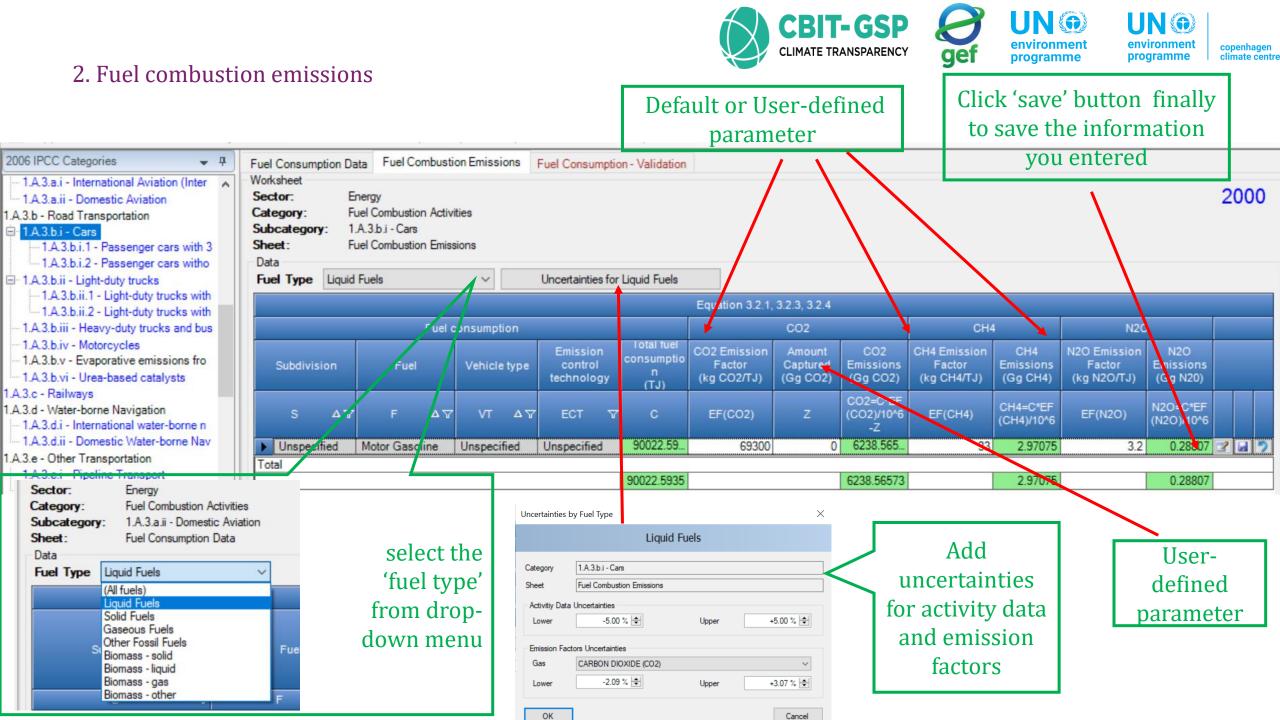


Mobile combustion related categories and sub-categories

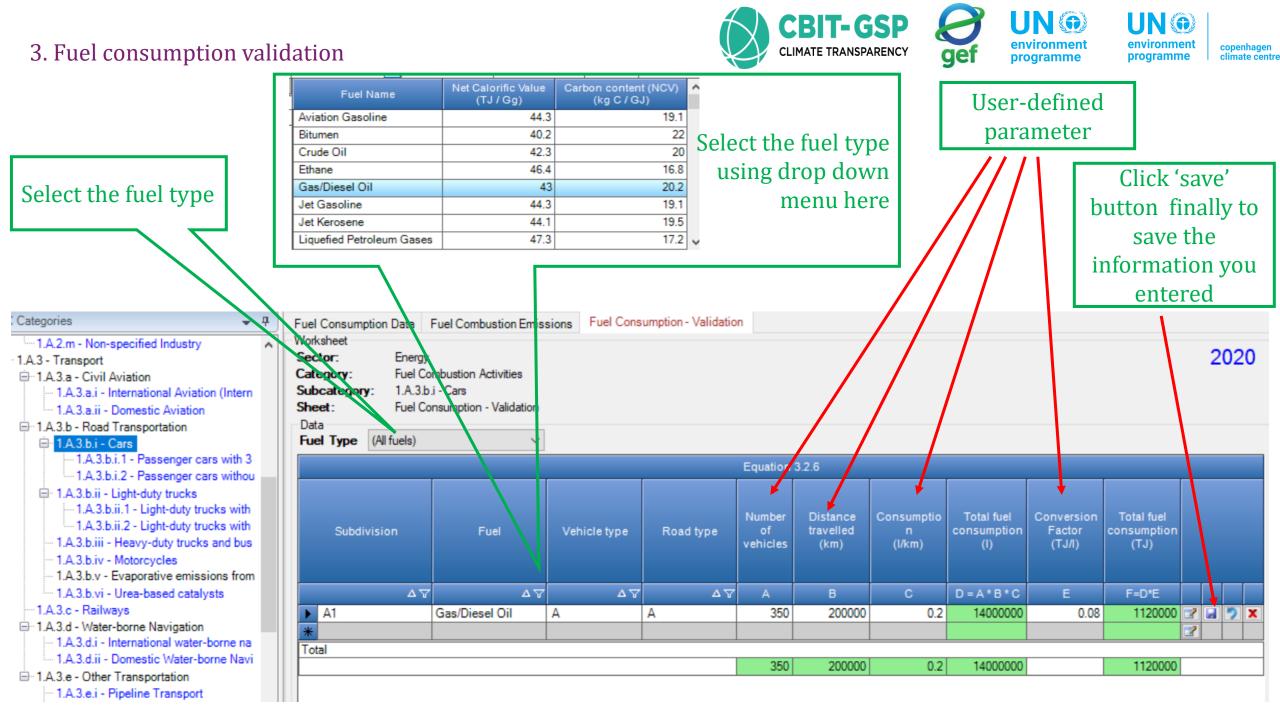
1.A.3.b - Road transportation







- In IPCC inventory tool, worksheets for sub-categories 1.A.3.b.i Cars and 1.A.3.b.ii Light-duty vehicles have common formats
 - There are 3 worksheets for each
 - 1. Fuel consumption data
 - 2. Fuel combustion emissions
 - 3. Fuel consumption validation



3. Fuel consumption – validation

- It is good practice to compare the fuel sold statistics used in the Tier 1 approach with the result of this
- This provides an important quality check.
- Significant differences between the results of two approaches may indicate that one or both sets of statistics may have errors, and that there is need for further analysis.
- It is good practice to consider any differences and determine which data is of higher quality. (Except in rare cases like when large quantities of fuel sold for off-road uses etc.)
- Calculated quantities in this worksheet are not reported.

Let's do an example with the inventory tool!

Activity 03

Step 01: Open the worksheet fuel consumption data of either 1.A.3.b.i.1 – Passenger cars with 3-way catalysts, 1.A.3.b.i.2 – Passenger cars without 3-way catalysts, 1.A.3.b.ii.1 – Light-duty trucks with 3-way catalysts, 1.A.3.b.ii.2 – Light-duty trucks without 3-way catalysts, 1.A.3.b.iii – Heavy-duty trucks and buses or 1.A.3.b.iv – Motorcycles

Step 02: Select the fuel type as liquid fuels

Step 03: Enter following data accordingly

Input parameter	Entry	Note
Subdivision	District A	
Fuel	Gas/ diesel oil	
Vehicle type	Motorcycles	
Emission control technology	Unspecified	
consumption	1000 TJ	

^{*}the activity data used in this activity are not real. Just examples only for this activity.

• Step 05: Open the worksheet Fuel combustion emissions and enter following data accordingly in the dialog box uncertainties for liquid fuels

Entry pa	rameter	Entry		
Activity data uncertainties	Upper	+5.00%		
	Lower	-5.00%		
Emission factors uncertainties				
Select the gas as Carbon Dioxide and enter following (*when you are entering data for real GHG inventory calculation, please make sure to ad uncertainties for other gases also)				
	Upper	+3.00%		
	Lower	-2.00%		

^{*}these values are not real. Just examples only for this activity.

Step 06: Enter following data accordingly in the previously opened worksheet

Input parameter	Entry	Note
CO ₂ emission factor	Default value, 74100	You can use specific values also. But please use the default value for this activity.
Amount captured	0 (Zero)	
CH ₄ emission factor	Default value, 3.9	You can use specific values also. But please use the default value for this activity.
N ₂ O emission factor	Default value, 3.9	You can use specific values also. But please use the default value for this activity.

^{*}the activity data used in this activity are not real. Just examples only for this activity.

Step 07: Save entered data

Let's do an example with the inventory tool!

Activity06

Step 01: Open the worksheet 1.A.3.b.vi – Urea-based catalysts and enter following data accordingly

Input parameter	Entry	Note
Subdivision	District A	
Amount of Urea-based additive consumed for use in catalytic converters	0.0001 Gg	
Purity (mass fraction of urea in the urea-based additive)	0.325	This is just an assumption

^{*}the activity data used in this activity is not real. Just an assumption only for this activity.

Step 02: Save entered data

Entry param	eter	Entry		
Activity data uncertainties	Upper	+1.00%		
	Lower	-1.00%		
Emission factors uncertainties				
Select the gas as Methane and enter following data (*when you are entering data for real GHG inventory calculation, please make sure to add uncertainties for other gases also)				
	+1.00%			
	Lower	-1.00%		

^{*}these values are not real. Just an assumption only for this activity.

2020

Urea-based catalysts

Worksheet

Sector: Energy

Category: Urea-based Catalysts

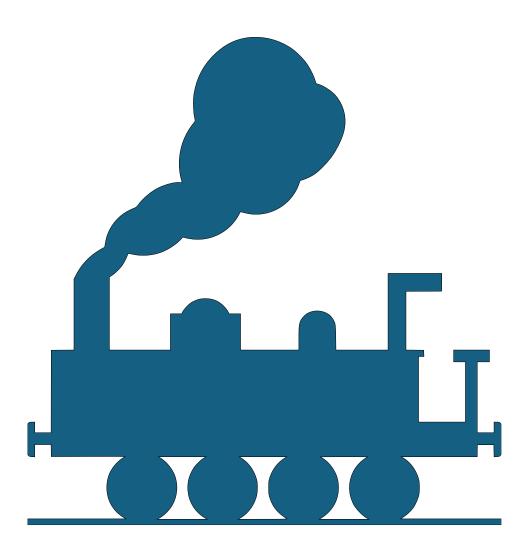
1.A.3.b.vi - Urea-based catalysts Subcategory:

CO2 Emissions from Urea-based Catalysts Sheet:

				Equation 3.2.2					
	Subdivision		Amount of Urea-based Additive Consumed for Use in Catalytic Converters (Gg)	Purity (Mass Fraction of Urea in the Urea-based Additive) (Fraction)	CO2 Emissions (Gg CO2)				
	S	ΔΥ	A	В	C=A*12/60*B*44/12				
Unspecified			0.0002	0.325		0.00005	3	う	
*							3		
otal									
			0.0002			0.00005			

Uncertainties

			X
	Uncerta	inties	
Category Sheet	1.A.3.b.vi - Urea-based catalysts		
Activitiy Data Lower	Uncertainties -1.00 % 🚖	Upper	+1.00 %
Emission Fact	tors Uncertainties		
Gas	CARBON DIOXIDE (CO2)		~
Lower	-1.00 % 🕏	Upper	+1.00 % 🖶
ОК			Cancel



CBIT-GSP

General method for emissions from locomotives

Emission = \sum_{i} [fuel $_{i}$ * EF $_{i}$]

Parameter	Description	Unit
Emission	Emissions of CO ₂	kg
fuel _j	Fuel type j consumed (as represented by fuel sold)	TJ
EF _j	Emission factor for fuel type j	kg/TJ
j	Fuel type	N/A

❖ Tier 1 approach use fuel-specific default emission factors assuming that for each fuel type the total fuel is consumed by a single locomotive type

Default EF values for Tier 1 calculations are available in IPCC guideline >> Volume 2 >> Chapter 3

Calculation example to find CO₂ emissions from railways in Philippines 2010, using general method (Tier 1)

Fuel type	consumption (ktoe)	2006 IPCC default CO ₂ emission factor (kg/TJ)	Conversion factor (TJ/ ktoe)	Emissions = Fuel consumption * EF
Diesel	1.28	74100	41.87	Fuel consumption = 1.28 ktoe*41.87 TJ/ktoe =
				53.5936 TJ
				E_{CO2} = 53.5936 TJ *74100 kg/TJ = 3,971,285.76
			_	kg or 3.98 Gg

TABLE 3.4.1 DEFAULT EMISSION FACTORS FOR THE MOST COMMON FUELS USED FOR RAIL TRANSPORT						
Gas	Diesel (kg/TJ) Sub-bituminous Coal (kg/TJ)					g/TJ)
	Default	Lower	Upper	Default	Lower	Upper
CO ₂	74 100	72 600	74 800	96 100	72 800	100 000
CH ₄ ¹	4.15	1.67	10.4	2	0.6	6
N ₂ O ¹	28.6	14.3	85.8	1.5	0.5	5

* conversion factor is used in here because activity data was present in ktoe (kilo tonne of oil equivalents)

If CO₂ has captured, it must subtract from the total CO₂ emissions

copenhagen climate centre

Calculation example to find CH₄ and N₂O emissions from railways in Philippines 2010, using Tier 1

Fuel type	consumption (ktoe)	2006 IPCC emission (kg/T	factor	Conversion factor (TJ/ ktoe)	Emissions = Fuel consumption * EF
Diesel	1.28	CH ₄ 4.15	N ₂ O 28.6	41.87	Fuel consumption = 1.28 ktoe*41.87 TJ/ktoe = 53.5936 TJ $E_{CH4} = 53.5936 \text{ TJ *} 4.15 \text{ kg/TJ} = 222.41344 \text{ kg or } 0.23 * 10^{-3} \text{ Gg}$ $E_{N20} = 53.5936 \text{ TJ *} 28.6 \text{ kg/TJ} = 1532.77696 \text{ kg or } 1.54 * 10^{-3} \text{ Gg}$

TABLE 3.4.1 DEFAULT EMISSION FACTORS FOR THE MOST COMMON FUELS USED FOR RAIL TRANSPORT							
Gas	Diesel (kg/TJ) Sub-bituminous Coal (kg/TJ)						
	Default	Lower	Upper	Default	Lower	Upper	
CO ₂	74 100	72 600	74 800	96 100	72 800	100 000	
CH ₄ ¹	4.15	1.67	10.4	2	0.6	6	
N ₂ O ¹	28.6	14.3	85.8	1.5	0.5	5	

conversion factor is used in here because activity data was

present in ktoe (kilo tonne of oil equivalents)

These default emission factors may, for non-CO2 gases, be modified depending on the engine design parameters. For that instances EF should be calculated using pollutant weighing factor as in below equation.

2006, IPCC default EF

Pollutant weighing factors IPCC>>Vol 2 >> Ch 3

TABLE 3.4.2 POLLUTANT WEGHTING FACTORS AS FUNCTIONS OF ENGINE DESIGN PARAMETERS FOR UNCONTROLLED ENGINES (DIMENSIONLESS)						
Engine type	\mathbf{CH}_4	N ₂ O				
Naturally Aspirated Direct Injection	0.8	1.0				
Turbo-Charged Direct Injection / Inter-cooled Turbo-Charged Direct Injection	0.8	1.0				
Naturally Aspirated Pre-chamber Injection	1.0	1.0				
Turbo-Charged Pre-chamber Injection	0.95	1.0				
Inter-cooled Turbo-Charged Pre-chamber Injection	0.9	1.0				

EQUATION 3.4.4

WEIGHTING OF CH₄ AND N₂O EMISSION FACTORS FOR SPECIFIC TECHNOLOGIES

 $EF_{i,diesel} = PWF_i \bullet EF_{default,diesel}$

Where:

EF_{i,diesel} = engine specific emission factor for locomotive of type i (kg/TJ)

PWF_i = pollutant weighing factor for locomotive of type i [dimensionless]

EF_{default, diesel} = default emission factor for diesel (applies to CH₄, N₂O) (kg/TJ)

CBIT-GSP

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor

+94 770 320 110

buddika@climatesi.com