GHG Inventory – Mobile combustion-Civil Aviation

UN () environment programme

nent copenhager

Training on 2006 IPCC Guidelines for preparing National GHG Inventory:

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

ronment cop

Content

Introduction

Civil aviation coverage in 2006 IPCC guideline

Civil aviation in Philippine GHGI, 2010

Calculation examples and exercises – Manually & using IPCC inventory tool

UN () environment programme

copenhagen climate centre

Introduction

Energy Sector

Total GHG emissions-2010 in the Philippines (Million tons of CO_2e)

	CO ₂	CH₄	N ₂ O	HFCs	Total
Energy	50.698	1.888	0.519	-	53.105
Agriculture	0.696	33.853	8.604	-	43.152
Transport	23.718	0.125	0.331	-	24.174
Waste	0.015	14.527	1.017	-	15.559
IPPU	7.564	0.009	0.019	0.771	8.363
FOLU	(37.016)	0.007	0.002	-	(37.007)
		ΤΟ	TAL		107.345

GHG Inventory Report-2010

UN 🏵 environment programme

I IN 🌀 nvironmen copenhagen climate centr

Civil aviation coverage in 2006 IPCC guideline

climate change

 According to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories no refinements has occurred in mobile combustion

2019 REFINEMENT

INTERGOVERNMENTAL PANEL ON CLIMATE CH

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES ON NATIONAL GREENHOUSE GAS INVENTORIES

Emission source coverage for civil aviation

Emissions from international and domestic civil aviation including take-offs and landings

- According to the 2006 IPCC Guidelines it may include emissions from,
 - International Aviation (International Bunkers)

- Include take-offs and landings for these flight stages
- Emissions from international military aviation can be included as a separate sub-category if the same definitional distinction is applied and data are available to support the definition
- Domestic Aviation
 - Emissions from civil domestic passenger and freight traffic that departs and arrives in the same country (commercial, private, agriculture , etc)
 - Include take-offs and landings for these flight stages
 - Exclude military

Civil aviation in GHGI, 2010

2010 Philippine Greenhouse Gas Inventory Report

Executive Summary

environment programme climate centre

Approaches used for data collection

□ For GHGI, 2010 in Philippines

_	

Overall energy balance sheet - Department of Energy (DoE)

climate cent

Activity data

- Fuel types used for Inventory calculation in GHGI, 2010
 - Jet kerosene
 - Aviation gasoline

Activity data used for road transportation in GHGI, 2010

	Coal	Natgas	Crude	PremGas	RegGas	Kero	Diesel	Fuel Oil	LPG	Jet	Avgas	Naphtha
Domestic Air Transport	-	-	-	-	-	-	-	-	-	337.74	3.45	-
International Civic Aviation	-	-	-	-	-	-	-	-	-	511.92	-	-

Emission factors

- Emission factors used for Inventory calculation in GHGI, 2010
 - IPCC, 1997

Example for CH₄ emission factors used for domestic aviation (highlighted in red) in GHGI, 2010

	ΑCTIVITY		COAL	NATURAL GAS	011		WOOD/ WOOD WASTE	CHARCOAL	OTHER BIOMASS & WASTES		
Energy Ind	lustries		1	1	3		30	200	30		
Manufactu	Manufacturing Industries & Construction			5	2		30	200	30		
	Domestic Aviation					0.5					
	Band				Gasoline	Diesel					
Transport	Noau		50	20	5						
	Railways	10		5							
	National Navigation	10		5							
	Commercial/Institutional		10	5	10)	300	200	300		
Other	Residential		300	5	10)	300	200	300		
Sectors	Anriculture /Forestry /Fishing	Stationary	300	5	10)	300	200	300		
	Agriculture/rorestry/rishing	Mobile		5	5						

Source: IPCC (1997)

Emissions

GHG emissions in Civil aviation

-002 -0117 -020	CO2	CH4	■ N20
---------------------	------------	-----	-------

Source: <u>Executive Summary 2010 National GHGI Report.pdf (climate.gov.ph)</u>

Gas	Emissions (Mt CO ₂ e)
CO ₂	0.706
CH ₄	0.000
N ₂ O	0.006
Total	0.712

onment copeni

Calculation examples and exercises -Manually & using **IPCC** inventory tool

environment programme

nt copenhage

Upcoming slides...

Each sub-category contain an example and corresponding exercise to be done by you

Sub-categories with same worksheet formats have only one

example and exercise

Tier 1 method

• Based on aggregate quantity of fuel consumption data for aviation (LTO and cruise)

Aviation equation Emissions = Fuel Consumption * Emission Factor

- Used to estimate emissions from aircrafts that use aviation gasoline and for jet-fuelled aviation activities when aircraft operational use data are not available
- Domestic and international emissions are to be estimated separately
- Use default emissions factors
- You can get those default emission factors from IPCC guidelines >> Volume 2 >> Chapter 3

Calculation	example to f	ind emissi	ons from ci	vil aviation 2	2010 Philipp	CBIT-GSI CLIMATE TRANSPARENCE ine, using tier 1	r gef	environment programme	VIN () vironment ogramme	copenhagen climate centre
Calculation example to fiFuel typeConsumptionDomestic aviation337.74Jet337.74Aviation gas3.45International aviationFuel typeDomestic and onternational aviation reportDomestic aviation JetJetJonnestic aviation aviation report separately!	on (ktoe)	IPCC defau	ult emission f	actor (kg/TJ)	Conversion fact ktoe)	cor (TJ/	2006 IPCC default EF			
Calculation exampleFuel typeConsuDomestic aviation gas337.74Aviation gas3.45International Jet511.92Domestic and nternational aviation report 	tion									
Calculation exFuel typeDomestic aviationJet3Aviation gas3International gas3Jet1Jet <t< td=""><td>227 74</td><td></td><td>CO₂</td><td>CH₄</td><td>N₂0</td><td>4107</td><td></td><td>TABLE 3.6.4 CO₂ emission factors</td><td></td><td></td></t<>	227 74		CO ₂	CH ₄	N ₂ 0	4107		TABLE 3.6.4 CO ₂ emission factors		
	557.74		71500	0.5	2	41.07	Fuel	Default (kg/TJ)	Lower 67 500	Upper
Aviation gas	3.45		70000	0.5	2	41.87	Jet Kerosene	71 500	69 800	74 400
International d	aviation		I						TABLE 3.6. Non-CO2 EMISSION	.5 N FACTORS
Jet	511.92		71500	0.5	2	41.87		Fuel CH4 I (Unco Factor	Default N ₂ O De ntrolled) (Uncon rs (in Factors	fault trolled) ¹ ; (in 1
Aviation gas International av Jet Domestic and			Emission	kg 137 kg 137 All fuels 0.5^a 2 $(-57\%/+100\%)^b$ $(-70\%/+150\%)^b$ $(-70\%/+150\%)^b$						
	Fuel type	CO ₂						Calculatio	n for C	H &
Domestic	Domestic av	N_20 is	same a	II ₄ &						
and	•	Fuel con	sumption =	337.74 ktoe	e*41.87 TJ/kt	toe = 14,141.173	8 TJ	calculatio	ns don	e for
Aviation gas International av Jet Domestic and nternational aviation report separately!	Jet	$E_{CO2} = 14$,141.1738	TJ * 71,500 l	kg/TJ = 1011	093927 kg or 10)11.09 Gg	CO ₂ . on	ly the F	EF
	Internation	al aviation							inge.	
		Fuel con	sumption =	511.92 ktoe	e*41.87 TJ/kt	coe = 21,434.090	4 TJ	If CO ₂ has	captur	ed, it
	Jet	$E_{CO2} = 21$,434.0904 7	ГЈ * 71,500 k	g must subtract from the total CO ₂ emissions					

Let's start working with the software

Dive into the Inventory tool together and explore its features firsthand copenhagen climate centre

Open the software and go to worksheets!

IPCC Inventory Software - dinukshi@climatesi - [Worksheets]

Mobile combustion related categories and sub-categories

1.A.3.a - Civil aviation

• In IPCC inventory tool, worksheets have same formats for both sub-categories *1.A.3.a.i – International*

environment programme

UN 💮 environment copenhagen climate centre programme

Let's do an example with the inventory tool!

Exercise 1: Civil aviation

Activity 01

- Step 01: Open the worksheet fuel consumption data and select the fuel type as Liquid fuels
- Step 02: Enter fuel consumption data into one of civil aviation worksheet (either domestic aviation or international aviation)

Input parameter	Entry
Fuel consumption data	
Subdivision	Unspecified
Fuel	Jet kerosene
Consumption	2810 million liters
Consumption unit	Gg (Auto CF)
Conversion factor	User-defined parameter

*the activity data used in this activity are not real. Just examples only for this activity.

• Step 03: Save entered data

- Step 04: Open the worksheet Fuel combustion emissions and select the fuel type as liquid fuels
- Step 05: Enter fuel combustion emission data into previously data entered same sub-category (either domestic aviation or international aviation)

Note: Here you have to enter emission factors. You can enter either default emission factors or specific

emission factors. But for this activity, please enter default values only.

Input parameter	Entry
Fuel combustion emissions	
CO ₂ emission factor	Default value, 71500
Amount captured	0 (Zero)
CH ₄ emission factor	Default value, 0.5
N ₂ O emission factor	Default value, 2

*the activity data used in this activity is not real. Just an examples only for this activity.

• Step 05: Save entered data

Fuel consumption data

Fuel Consumption Data	Fuel Comb	oustion Emissions	LTO Fuel co	onsumption and LTO er	missions - Tier 2	Cruise and tot	tal emissions - Tier 2					
Worksheet Sector: Energy Category: Fuel Co Subcategory: 1.A.3.a Sheet: Fuel Co Data Fuel Type Liquid Fuels	mbustion A i - Internati	octivities onal Aviation (Interna Data ~	ational Bunkers	s)							202	20
Equation 3.6.1												
Subdivision		Fuel		Consumption (Mass, Volume or Energy Unit)	Consumpt	ion Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)				
S	Δγ	F	Δ7	с	U	V	CF	TC = C * CF				
Unspecified		Jet Kerosene		2810	Gg (Auto CF)		44.1	123921	2		2	X
Total								123921				

Δ

Fuel Work Sect Cate Sub She	Consump sheet tor: egory: category et:	tion Data Ener Fuel r: 1.A. Fuel	Fuel Combus rgy Combustion Acti 3.a.i - Internation Combustion Emi	ivities al Avia	missions LT	O Fuel consumption al Bunkers)	n and LTO emis	sions - Tier 2	Cruise and total em	nissions - Tier 2			20	20
Fue	∝ el Type	Liquid Fu	iels		∨ Un	certainties for Liquid	l Fuels							
	Equation 3.6.1													
	Fuel consumption						CO2		CH4		N20			
	Subdivis	sion	Fuel		Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)		
	s	۵Ţ	F	۵Ţ	с	EF(CO2)	z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6		
	Unspeci	fied	Jet Kerosene		123921	71500	0	8860.3515	0.5	0.06196	2	0.24784	2	3)
Tota	al				122921			2260 2515		0.06196		0 24784		

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com