

environment programme

environment programme climate cen

GHG Inventory – Fugitive Emissions

Present By:

Eng. H. M. Buddika Hemashantha

International MRV Transparency Advisor to CBIT-GSP Training on 2006 IPCC Guidelines for preparing National GHG Inventory:

Organized by the Capacity Building Initiative for Transparency Global Support Programme (CBIT-GSP)

Contents

- 1. Introduction
- 2. Analysis of 2006 IPCC Guidelines and 2019 Refinement
- 3. Fugitive Emissions coverage in 2006 IPCC guideline
- 4. Fugitive emissions in GHGI, 2010
- 5. Calculation examples and exercises Manually & using IPCC inventory tool

1. Introduction

Outline of Energy Sector

- 1. Energy Sector: scope and importance
- 2. Fuel Combustion (stationary and mobile): CO2 emissions
- 3. Fuel Combustion: CH4 and N2O emissions

4. Methodological issues:

- 4.1 Biomass
- 4.2 Road Transport
- 4.3 International bunker
- 4.4 Waste as a fuel
- 4.5 Reference Approach
- 4.6 Excluded carbon

5. Fugitive Emissions

- 5.1 Coal mines
- 5.2 Oil and gas systems

6. Carbon Dioxide Transport, Injection and Geological Storage

7. Summary

Energy Sector: Scope

- 1. Exploration and exploitation of primary energy sources
- 2. Conversion of primary energy sources into more useable energy forms in refineries and power plants
- 3. Transmission and distribution of fuels
- 4. Use of fuels in stationary and mobile applications

Reference: UNFCCC CGE Training material

Energy Sector

Total GHG emissions-2010 in the Philippines (Million tons of CO_2e)

	CO ₂	CH₄	N ₂ O	HFCs	Total
Energy	50.698	1.888	0.519	-	53.105
Agriculture	0.696	33.853	8.604	-	43.152
Transport	23.718	0.125	0.331	-	24.174
Waste	0.015	14.527	1.017	-	15.559
IPPU	7.564	0.009	0.019	0.771	8.363
FOLU	(37.016)	0.007	0.002	-	(37.007)
		107.345			

GHG Inventory Report-2010 Philippines

1A. Fuel Combustion

For inventory purposes, *fuel combustion* may be defined as the intentional oxidation of materials within an apparatus that is designed to provide heat or mechanical work to a process, or for use away from the apparatus

- ✓ *Not Energy Sector:*
 - waste incineration without energy recovery \rightarrow Waste
 - use of fossil fuels as a feedstock in the Industrial Sector (e.g., coke in Iron&Steel) → IPPU
 - biomass fires/open burning \rightarrow AFOLU
- ✓ Coal mines fires, Gas flaring are in Fugitive Emissions

Reference: UNFCCC CGE Training material

1B. Fugitive Emissions

UN 🎯

environment

programme

copenhagen climate centre

1B. Fugitive Emissions

Fugitive emissions are emissions of gases or vapour from equipment due to leaks and other unintended or irregular releases of gases, mostly from activities associated with the production and distribution of fossil fuels. It includes leaks from pressurised equipment, evaporation and displacement of vapour, and accidental releases

- Significant CH₄ emissions from:
 - Coal mines
 - Refinery leaks
 - Gas distribution pipelines
- Simple Emission Factor methods at Tier 1. Higher Tiers need more details on technologies and age of plant/mines etc.

Coal Mines

 CH_4 is the major GHG emitted from coal mining and handling. CO_2 may also be present in some coal seams. The major stages for the GHG emissions for both underground and surface coal mines are:

- Mining emissions gas liberated by fracturing coal during mining. This may be collected (for safety) and flared or used for energy. Emission can continue after mine closure
- Post-mining emissions emissions during processing, handling and distribution
- Low temperature oxidation coal slowly oxidises to CO₂ when exposed to the air
- Uncontrolled combustion oxidation may lead to an active fire in coal storage or exposed coal seams with a rapid CO₂ formation. This can occur naturally
- ✓ Simple emission factors are provided for Tier 1, country-specific data is required for better estimates

Oil and Gas

- Oil & Gas fugitive emissions include all emissions from oil and gas systems <u>except</u> those for the use of oil and gas for energy purpose or as a feedstock
- It covers everything from an oil well to a consumer:
 - Exploration and Production
 - Processing and Refining
 - Distribution and Delivery
- Includes equipment leaks, evaporation loses, venting, flaring and accidental releases

- CO₂ may be contained in the oil or gas as extracted from the reservoir
- CH₄ can be released directly (e.g. leaks of natural gas)
- CO₂, CH₄ and N₂O can also be formed in non-useful energy combustion (e.g. flaring)
- General Tier 1 EFs (for developing and developed countries) are
 available
- At higher tiers detailed knowledge of the system is needed. Countryspecific EFs will need to be developed based on measurements

<u>Tier 1:</u>

- The available Tier 1 default EFs are presented in the 2006 IPCC Guidelines. All of the presented EFs are expressed in units of mass emissions per unit volume of oil or gas throughput
- While some types of fugitive emissions correlate poorly with, or are unrelated to, throughput on an individual source basis (e.g., fugitive equipment leaks), the correlations with throughput become more reasonable when large populations of sources are considered
- Furthermore, throughput statistics are the most consistently available AD for use in Tier 1 calculations

Oil and Gas. Default EFs

environment programme

nent copenhagen Ime climate centre

	TABLE 4.2.5 TIER 1 EMISSION FACTORS FOR FUGITIVE EMISSIONS (INCLUDING VENTING AND FLARING) FROM OIL AND GAS OPERATIONS IN DEVELOPING COUNTRIES AND COUNTRIES WITH ECONOMIES IN TRANSITION ^{a,b}											
				CH ₄		CO ₂ ⁱ		NMVOC		N ₂ O		
Category	Sub-category ^e	Emission source	IPCC Code	Value	Uncertainty (% of value)	Value	Uncertainty (% of value)	Value	Uncertainty (% of Value)	Value	Uncertainty (% of value)	Units of measure
Well Drilling	A11	Flaring and Venting	1.B.2.a.ii or 1.B.2.b.ii	3.3E-05 to 5.6E-04	-12.5 to +800%	1.0E-04 to 1.7E-03	-12.5 to +800%	8.7E-07 to 1.5E-05	-12.5 to +800%	ND	ND	Gg per 10 ³ m ³ total oil production
Well Testing	A11	Flaring and Venting	1.B.2.a.ii or 1.B.2.b.ii	5.1E-05 8.5E-04	-12.5 to +800%	9.0E-03 to 1.5E-01	-12.5 to +800%	1.2E-05 to 2.0E-04	-12.5 to +800%	6.8E-08 to 1.1E-06	-10 to +1000%	Gg per 10 ³ m ³ total oil production
Well Servicing	A11	Flaring and Venting	1.B.2.a.ii or 1.B.2.b.ii	1.1E-04 to 1.8E-03	-12.5 to + 800%	1.9E-06 to 3.2E-05	-12.5 to +800%	1.7E-05 to 2.8E-04	-12.5 to +800%	ND	ND	Gg per 10 ³ m ³ total oil production
Gas	A 11	Fugitives ^d	1.B.2.b.iii.2	3.8E-04 to 2.4E-02	-40 to +250%	1.4E-05 to 1.8E-04	-40 to +250%	9.1E-05 to 1.2E-03	-40 to +250%	NA	NA	Gg per 10 ⁶ m ³ gas production
Production	All	Flaring ^e	1.B.2.b.ii	7.6E-07 to 1.0E-06	±75%	1.2E-03 to 1.6E-03	±75%	6.2E-07 to 8.5E-07	±75%	2.1E-08 to 2.9E-08	-10 to +1000%	Gg per 10 ⁶ m ³ gas production
Gas Processing	Sweet Gas	Fugitives	1.B.2.b.iii.3	4.8E-04 to 1.1E-03	-40 to +250%	1.5E-04 to 3.5E-04	-40 to +250%	2.2E-04 to 5.1E-04	-40 to +250%	NA	NA	Gg per 10 ⁶ m ³ raw gas feed
	Plants	Flaring	1.B.2.b.ii	1.2E-06 to 1.6E-06	±75%	1.8E-03 to 2.5E-03	±75%	9.6E-07 to 1.3E-06	±75%	2.5E-08 to 3.4E-08	-10 to +1000%	Gg per 10 ⁶ m ³ raw gas feed
	Sour Gas Plants	Fugitives	1.B.2.b.iii.3	9.7E-05 to 2.2E-04	-40 to +250%	7.9E-06 to 1.8E-05	-40 to +250%	6.8E-05 to 1.6E-04	-40 to +250%	NA	NA	Gg per 10 ⁶ m ³ raw gas feed

2. Analysis of 2006 IPCC Guidelines and 2019 Refinement

According to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, there are mainly 3 changes for fugitive emissions

For emissions from mining, processing, storage and transportation of coal, the 2019 Refinement includes guidance on emissions of carbon dioxide (CO2) emissions from underground and surface mines

For emissions from oil and natural gas systems, the 2019 Refinement includes emission factors representative of current practice, including for unconventional oil and gas exploration, and methods and emission factors for abandoned wells.

For fuel transformation, the 2019 Refinement includes a new section on fugitive emissions from fuel transformation, including methods for fugitive emissions from charcoal production, coke production, coal to liquids and gas to liquids

3. Fugitive emissions coverage in 2006 IPCC guideline

INTERGOVERNMENTAL PANEL ON Climate change

- According to the 2006 IPCC Guidelines it includes emissions from,
 - Mining, Processing, Storage and Transportation of Coal
 - Underground mining
 - Surface coal mining
 - Abandoned underground coal mining

- Oil and Natural Gas Systems
 - Crude oil production
 - Natural gas systems

Avoiding Double Counting Activity Data With Other Sectors

Fuel Combustion Sector:

- Use fuel combustion statistics instead of fuel delivery statistics.
- Be cautious about incomplete combustion data and potential double counting.
- Coordinate estimates between stationary source categories to avoid inaccuracies.

Industrial Processes and Product Use (IPPU) Sector:

- Account for emissions from synthesis gas production in IGCC under fuel combustion.
- Consider emissions from carbide production, especially when using carbon-rich fuels.

Metal Production (IPPU and AFOLU Sectors):

- Include emissions from the use of coal, coke, natural gas, and by-product fuels in metal production.
- Differentiate between fossil carbon materials and biogenic content for wood chips and charcoal.

Energy and Waste Sectors:

- Ensure consistency between stationary combustion and fugitive emissions accounting for methane from coal mine waste, landfill gas, and sewage gas.
- Report emissions from waste incineration with energy recovery in the Energy sector.

Waste Sector (Incineration):

- Distinguish between waste incineration with and without energy recovery.
- Assess and differentiate between fossil-carbon and biogenic content for accurate emissions reporting.

Waste Sector (Used Oils):

- Coordinate with those recovering used oils to assess the extent of burning.
- Estimate and report emissions in the Energy sector if used oils are used as fuel.

4. Fugitive emissions in GHGI 2010

2010 Philippine Greenhouse

Gas Inventory Report

Executive Summary

 In 2010, 87% of the total came from coal mining at 0.090 Mt CO₂e and the remaining 13% coming from oil and natural gas exploration at 0.013 Mt CO₂e.

	CO ₂	CH₄	N ₂ O	Total
Energy Industries	32.803	0.049	0.168	33.020
Manufacturing Industries and Construction	11.887	0.055	0.095	12.040
Other Sectors	5.995	1.692	0.257	7.940
Fugitive Emissions – Solid Fuels	-	0.090	-	0.090
Fugitive Emissions – Oil and Natural Gas	0.012	0.001	0.000	0.013
	53.103			

Source : <u>Microsoft Word - [Lay-out] 2010 National GHGI Figures ver 3.docx (climate.gov.ph)</u>

Emission shares of energy subsectors, including fugitive emissions in 2010 national GHGI

nment copen

Approaches to data collection

Institutional Sources

- Overall Energy Balance Sheet maintained by the Energy Policy Formulation and Research Division - Energy Policy and Planning Bureau.
- Coal and Mining Division DOE
- Natural Gas Management Division DOE
- Petroleum Resource Development Division DOE
- Oil and Gas Division DOE

Literature Sources

Calculation examples and exercises – Manually & using IPCC inventory tool

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES

GLOBAL AVERAGE METHOD – UNDERGROUND MINING-TIER 01

 CH_4 emissions = CH_4 Emission from Underground mining+ Post-mining emission of CH_4

NOTE : If there is any CH_4 recovered and utilized for energy production or flared, it can be subtracted from the final answer to adjust the CH_4 emissions.

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES

Step 02 : Estimating the underground mining emissions of CH4 using the equation below

TIER 1: GLOBAL AVERAGE METHOD – UNDERGROUND MINES

Methane emissions = CH₄ Emission Factor * Underground Coal Production * Conversion Factor

Step 03 : Estimating the Post mining emissions of CH4 using the equation below

TIER 1: GLOBAL AVERAGE METHOD – POST MINING EMISSIONS – UNDERGROUND MINES

Methane emissions = CH₄ Emission Factor * Underground Coal Production * Conversion Factor

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES - TIER 01

A: Selection of the Emission Factor for the Underground mining emissions of CH₄

Among these 3 types of emission factors, the appropriate emission factor can be selected according to the mining depth as gas content of coal usually increases with depth.

Mining Depth	Lower limit	Upper limit	Emission factor
Low (below 200m)	5	20	10 m³/tonne
Average(200-400m)	9	36	18 m³/tonne
High (Above 400m)	12	50	25 m³/tonne

Reference for the default emission factor: IPCC 2006 guidelines

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES-TIER 01

B: Selection of CH₄ Emission Factor for the Post Mining Emissions –Underground mines

Among these 3 types of emission factors, the appropriate emission factor can be selected according to the mining depth.

Mining Depth	Lower limit	Upper limit	Emission factor
Low	0.3	2.7	0.9 m³/tonne
Average	0.8	7.5	2.5 m³/tonne
High	1.3	12	4 m³/tonne

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES-TIER 01

C: Getting the Activity Data (Underground Coal Production)

The activity data required for Tiers 1 are raw coal production

D: Getting the Unit Conversion Factor

- This is the density of CH₄
- It converts volume of CH₄ to mass of CH₄
- The density is taken at 20°C and 1 atmosphere pressure

EXAMPLE OF ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 01

Parameter	Value	Source
Raw coal production	0.046 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	18 m ³ tonne ⁻¹ (Average CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

EXAMPLE OF ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

CH4 emissions = Raw coal production * Emission Factor * Units conversion factor

CH4 emissions = 0.046 million tonnes/year * 18 m³ tonne⁻¹ * 0.67 * 10^{-6} Gg m⁻³

= 0.55 Gg/year

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software and choose the required inventory year

Step 02 : Select the "1.B.1.a.i.1 – Mining" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Underground Mines".

Coal production from underground mines Emissions from underground mines									
Worksheet Sector: Category: Subcategory: Sheet:	Energy Fugitive Emissions from 1.B.1.a.i.1 - Mining Coal production from un	Fuels - Solid Fuels derground mines							2000
Data									
				Equation 4.1.3					
	S	Subdivision	Amount of Coal Produced (tonne)						
		S	Δ 7	СР					
Philippines					46000	2		ر ۲	X
*					2				
Total	Total								
					46000				

ESTIMATING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT.

Step 04 : Save the entries using the save icon

Step 05 : Enter the "CH₄ Emission Factor in the sheet "Emissions from underground mines". Conversion factor will be automatically entered.

Step 06 : If there is any recovered methane, add it to "Methane recovered" in the same sheet.

Coal production from underground mines Emissions from underground mines												
Worksheet Sector: Energy Category: Fugitive Emissions from Fuels - Solid Fuels Subcategory: 1.B.1.a.i.1 - Mining Sheet: CO2 and CH4 emissions from underground mines Data									20	00		
Gas	METHAN	E (CH4)	~									
						Equation 4.1.	3					
Amount of Coal CH4 Emission Factor CH4 Emissions Conversion Factor Methane recovered CH4 Emission Subdivision (tonne) (m3/tonne) (m3) (Gg CH4/m3) (Gg CH4) (Gg CH4					CH4 Emissions (Gg CH4)							
		Δ	∇	CP	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R			
M Pł	Philippines 46000 18 828000 0.00000067 0.55476 2 0.55476								2			
Total												
46000 828000					0.55476							

EXAMPLE OF ESTIMATING EMISSIONS FROM POST MINING OF UNDERGROUND COAL MINES FOR TIER 1

Parameter	Value	Source
Raw coal production	0.046 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	2.5 m ³ tonne ⁻¹ (Average CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

EXAMPLE OF ESTIMATING EMISSIONS FROM POST MINING OF UNDERGROUND COAL MINES FOR TIER 1

TIER 1: GLOBAL AVERAGE METHOD – POST MINING EMISSIONS – UNDERGROUND MINES

Methane emissions = CH₄ Emission Factor * Underground Coal Production * Conversion Factor

Methane emissions = CH₄ Emission Factor * Underground Coal Production * Conversion Factor

Methane emissions = 0.046 million tonnes/year * 2.5 m³ tonne⁻¹ * 0.67 * 10^{-6} Gg m⁻³

= 0.077 Gg/year

ESTIMATING POST MINING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software

step 02 : Select the "1.B.1.a.i.2 – Post Mining Seam Gas Emissions" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from underground Mines".

Step 04 : Save the changes using the save icon

Coal production f	rom underground mines	Emissions from underground m	nines							
Sector: Category: Subcategory: Sheet: Data	Energy Fugitive Emissions from 1.B.1.a.i.2 - Post-mining Coal production from une	Fuels - Solid Fuels seam gas emissions derground mines							2000	
Equation 4.1.4										
	S	ubdivision		Amount of Coal Produced (tonne)						
		S	ΔV	CP						
Philippines					46000			<u>ຼັງ</u>	X	
*										
					46000					

ESTIMATING POST MINING EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT.

Step 04 : Enter the "CH₄ Emission Factor" in the sheet "Emissions from underground mines" and conversion factor will be automatically entered.

Step 05 : Enter "Methane recovered" if any.

Coal production fr	oal production from underground mines Emissions from underground mines orksheet									
Sector: Category: Subcategory: Sheet:	tor: Energy 2000 egory: Fugitive Emissions from Fuels - Solid Fuels 2000 category: 1.B.1.a.i.2 - Post-mining seam gas emissions 2000 et: CO2 and CH4 emissions from underground mines 2000									
Gas METHAN	ata Bas METHANE (CH4)									
				Equation 4.1.4	1					
Subdiv	vision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)			
S	ΔV	СР	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R			
Philippines		46000	2.5	115000	0.0000067		0.07705			っ
Total	Total									
		46000		115000			0.07705			

ESTIMATING TOTAL EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

GLOBAL AVERAGE METHOD – UNDERGROUND MINING

CH₄ emissions = CH₄ Emission from Underground mining+ Post-mining emission of CH₄

Methane emissions = Underground mining emissions of CH_4 + Post-mining emission of CH_4

= 0.55 Gg/year + 0.077Gg/year

= 0.627 Gg/year

NOTE : If there is any recovering of CH_4 or utilization for energy production or flaring, it should be subtracted from the final emission.

Example : If there is an assumed 0.1Gg/year recovering of CH₄ or utilization for energy production or flaring,

The adjusted CH_4 emission = 0.627 Gg/year - 0.1Gg/year

= 0.527 Gg/year

NOTE : According to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, a new section has been added to calculate the CO_2 emission from the underground mining along with emission factors.

 CO_2 emissions = CO_2 Emission Factor • Underground Coal Production • Conversion Factor

Low CO₂ Emission Factor Average CO₂ Emission Factor High CO₂ Emission Factor $= 0.05 \text{ m}^3 \text{ tonne}^{-1}$

 $= 5.9 \text{ m}^3 \text{ tonne}^{-1}$

 $= 12.3 \text{ m}^3 \text{ tonne}^{-1}$

Average CO₂ Emission Factor is recommended if there is no evidence to select high or low emission factor.

Conversion factor = 1.84×10^{-6} Gg m⁻³

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

CO₂ emissions = Raw underground coal production * Emission Factor * Units conversion factor

Parameter	Value	Source		
Raw coal production	0.046 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)		
Emission Factor	5.9 m ³ tonne ⁻¹ (Average CO ₂ Emission Factor)	2019 Refinement to the 2006 IPCC Guidelines		
Units Conversion Factor	1.84 * 10 ⁻⁶ Gg m ⁻³	2019 Refinement to the 2006 IPCC Guidelines		

CO_2 emissions = 0.046 million tonnes/year * 5.9 m³ tonne⁻¹ * 1.84 * 10⁻⁶ Gg m⁻³

= 0.4993 Gg/year

Coal production from underground mines Emissions from underground mines									
Sector: Energy 2000 Category: Fugitive Emissions from Fuels - Solid Fuels 2000 Subcategory: 1.B.1.a.i.1 - Mining 2000 Sheet: C02 and CH4 emissions from underground mines 2000 Data CARBON DIOXIDE (C02) V									
			Equation 4.	1.3					
Subdivision	Amount of Coal Produced (tonne)	CO2 Emission Factor (m3/tonne)	CO2 Emissions (m3)	Conversion Factor (Gg CO2/m3)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)			
S 🛆	Ф СР	EF	E(m3)=CP*EF	CE	Z	E(Gg)=E(m3)*CF-Z			
Philippines	46000	5.9	271400	0.00000184	0	0.49938	3		っ
Total	46000		271400			0.49938	}		

EXAMPLE OF ESTIMATING POST CO_2 EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

CO₂ emissions = Raw underground coal production * Emission Factor * Units conversion factor

Parameter	Value	Source
Raw coal production	0.046 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	6 m ³ tonne ⁻¹ (Average CO ₂ Emission Factor)	Assumed value
Units Conversion Factor	1.84 * 10 ⁻⁶ Gg m ⁻³	2019 Refinement to the 2006 IPCC Guidelines

CO_2 emissions = 0.046 million tonnes/year * 6 m³ tonne⁻¹ * 1.84 * 10⁻⁶ Gg m⁻³

= 0.50784 Gg/year

Coal production fi	rom underground mine	Emissions from underg	round mines							
Sector: Category: Subcategory: Sheet: Data Gas CARBON	ector: Energy 2000 ategory: Fugitive Emissions from Fuels - Solid Fuels 2000 ubcategory: 1.B.1.a.i.2 - Post-mining seam gas emissions 2000 heet: CO2 and CH4 emissions from underground mines 2000 Data CARBON DIOXIDE (CO2) 2000									
				Equation 4.	1.4					
Sub	odivision	Amount of Coal Produced (tonne)	CO2 Emission Factor (m3/tonne)	CO2 Emissions (m3)	Conversion Factor (Gg CO2/m3)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)			
5	s ∆⊽	CP	EF	E(m3)=CP*EF	CF	Z	E(Gg)=E(m3)*CF-Z			
M Philippines		46009	6	2760 0	0.00000184	0	0.50784			2
Total										
		46000		276000			0.50784			

environment programme

environment programme climate centre

Let's do an exercise!

Step 01 : Open the software

step 02 : Select the "1.B.1.a.i.1 – Mining" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Underground Mines" and save. Use the data provided in the table below.

Step 04 : Enter the "Emission Factor in the sheet "Emissions from underground mines".

Parameter	Value	Source
Raw coal production	100000 tonne/year	Assumed value
CH ₄ Emission Factor	10 m ³ tonne ⁻¹ (Low CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

environment programme

t copenhagen climate centre

Coal production from underground mines Emissions from underground mines												
Works Sector Cate Subc Shee	sheet or: gory: sategory: st:	Energy Fugitive Emiss 1.B.1.a.i.1 - M CO2 and CH4	ions from Fuels - Solid Fu ining emissions from undergrou	els und mines							20(00
Gas	ias METHANE (CH4) V											
					Equation 4.1.3	3						
	Subdiv	ision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)				
	S	Δγ	СР	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R				
2	Philippines		100000	10	1000000	0.0000067		0.	67 [1		2
Tota												
			100000		1000000			0.	67			

Step 01 : Open the software

step 02 : Select the "1.B.1.a.i.2 – Post Mining Seam Gas Emissions" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Underground Mines". Use the data provided in the table below.

Step 04 : Enter the "CH₄ Emission Factor" in the sheet "Emissions from Underground mines".

Parameter	Value	Source
Raw coal production	100000 tonne/year	Assumed Value
Emission Factor	0.9 m ³ tonne ⁻¹ (Low CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

environment programme climate centre

Coal production from underground mines Emissions from underground mines											
Worksheet Sector:	Energy								200	00	
Category: Subcategory: Sheet: Data	category: 1.B.1.a.i.2 - Post-mining seam gas emissions et: CO2 and CH4 emissions from underground mines a										
Gas METHANE	Gas METHANE (CH4) V Equation 4.1.4										
Subdivi	sion	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)				
S	ΔΥ	CP	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R				
M Philippines		100000	0.9	90000	0.0000067		0.0603			2	
Total											
		100000		90000			0.0603				

ESTIMATING TOTAL EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

GLOBAL AVERAGE METHOD – UNDERGROUND MINING

 CH_4 emissions = CH_4 Emission of Underground mining+ Post-mining emission of CH_4

Methane emissions = Underground mining emissions of CH_4 + Post-mining emission of CH_4

= 0.67 Gg/year + 0.0603 Gg/year

= 0.7303 Gg/year

ESTIMATING EMISSIONS FROM SURFACE COAL MINES

GENERAL EQUATION FOR ESTIMATING FUGITIVE EMISSIONS FROM SURFACE COAL MINING

 CH_4 emissions = Surface mining emissions of CH_4 + Postmining emission of CH_4

ESTIMATING EMISSIONS FROM SURFACE COAL MINES

Step 02 : Estimating the Surface mining emissions of CH₄ using the equation below

TIER 1: GLOBAL AVERAGE METHOD – SURFACE MINES

Methane emissions = CH₄ Emission Factor * Surface Coal Production * Conversion Factor

Step 03 : Estimating the Post mining emissions of CH_4 using the equation below

TIER 1: GLOBAL AVERAGE METHOD – POST MINING EMISSIONS -SURFACE MINES

Methane emissions = CH₄ Emission Factor * Surface Coal Production * Conversion Factor

ESTIMATING EMISSIONS FROM SURFACE COAL MINES- TIER 01

A: Selection of Emission Factor for the Surface mining emissions of CH₄

Among these 3 types of emission factors, the appropriate emission factor can be selected according to the mining depth.

Mining Depth	Lower limit	Upper limit	Emission factor
Low	0.1	0.9	0.3 m³/tonne
Average	0.4	3.6	1.2 m³/tonne
High	0.6	6	2 m³/tonne

NOTE : In the absence of data on mining depth, it is good practice to use the average emission factor, namely 1.2 m³/tonne.

ESTIMATING EMISSIONS FROM SURFACE COAL MINES- TIER 01

B: Selection of CH₄ Emission Factor for the Post Mining Emissions -Surface mines

Among these 3 types of emission factors, the appropriate emission factor can be selected according to the mining depth.

Mining Depth	Lower limit	Upper limit	Emission factor
Low	0	0.03	0 m³/tonne
Average	0.03	0.3	0.1 m³/tonne
High	0.06	0.6	0.2 m³/tonne

NOTE : In the absence of data on mining depth, it is good practice to use the average emission factor, namely 0.1 m³/tonne.

ESTIMATING EMISSIONS FROM SURFACE COAL MINES- TIER 01

C: Getting the Activity Data (Surface Coal Production)

Same as with underground coal mines, the activity data required for Tiers 1 and 2 are raw coal production

D: Getting the Unit Conversion Factor

Same as with underground coal mines, the Units Conversion Factor should be the density of CH_4

EXAMPLE OF ESTIMATING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1

Parameter	Value	Source
Raw coal production	1.175 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (Page 34)
Emission Factor	1.2 m ³ tonne ⁻¹ (Average CH_4 Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

EXAMPLE OF ESTIMATING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1

TIER 1: GLOBAL AVERAGE METHOD – SURFACE MINES

Methane emissions = CH₄ Emission Factor * Surface Coal Production * Conversion Factor

```
Methane emissions = CH_4 Emission Factor * Surface Coal Production * Conversion Factor
```

```
Methane emissions = 1.175 million tonnes/year * 1.2 m<sup>3</sup> tonne<sup>-1</sup> * 0.67 * 10<sup>-6</sup> Gg m<sup>-3</sup>
```

```
= 0.9447 Gg/year
```

ESTIMATING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software

step 02 : Select the "1.B.1.a.ii.1 – Mining" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Surface Mines" and save using the save icon.

Step 04 : Enter the " CH_4 Emission Factor" in the sheet "Emissions from surface mines".

Coal production fr	om surface mines	Emissions from surface mines							
Worksheet Sector: Category: Subcategory: Sheet: Data	Vorksheet Sector: Energy Category: Fugitive Emissions from Fuels - Solid Fuels Subcategory: 1.B.1.a.ii. 1 - Mining Sheet: Coal production from surface mines Data 2							2000	
				Equation 4.1.7					
		Subdivision		Amount of Coal Produced (tonne)					
		S	ΔV	CP					
Philippines					1175000	2		?	X
*						2			
Total									
					1175000				

ESTIMATING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT.

Coal p	roduction fro	om surface mi	Emissions from sur	face mines						
Sector Categ Subca Sheel	orksheet Energy 200 ategory: Fugitive Emissions from Fuels - Solid Fuels 200 ubcategory: 1.B.1.a.ii.1 - Mining 1.B.1.a.ii.1 - Mining heet: CO2 and CH4 emissions from surface mines CO2								00	
Gas	METHAN	E (CH4)	~							
					Equation 4.1.7	7				
	Subdiv	ision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)		
	S	Δ 7	7 CP	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R		
🎾 F	hilippines		1175000	1.2	1410000	0.0000067		0.9447		2
Total										
			1175000		1410000			0.9447		

EXAMPLE OF ESTIMATING EMISSIONS FROM POST MINING OF SURFACE COAL MINES FOR TIER 1

Parameter	Value	Source
Raw coal production	1.175 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	0.1 m ³ tonne ⁻¹ (Average CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

EXAMPLE OF ESTIMATING EMISSIONS FROM POST MINING OF SURFACE COAL MINES FOR TIER 1

TIER 1& Tier 2: GLOBAL AVERAGE METHOD – POST MINING EMISSIONS - SURFACE MINES

Methane emissions = CH_4 Emission Factor * Surface Coal Production * Conversion Factor

Methane emissions = CH_4 Emission Factor * Surface Coal Production * Conversion Factor

Methane emissions = 1.175 million tonnes/year * 0.1 m³ tonne⁻¹ * 0.67 * 10^{-6} Gg m⁻³

= 0.0787 Gg/year

ESTIMATING POST MINING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software

step 02 : Select the "1.B.1.a.ii.2 – Post Mining Seam Gas Emissions" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Surface Mines".

Coal production from surface mines Emissions from surface mines									
Worksheet Sector: Category: Subcategory: Sheet: Data	sheet tor: Energy sgory: Fugitive Emissions from Fuels - Solid Fuels category: 1.B.1.a.ii.2 - Post-mining seam gas emissions et: Coal production from surface mines							2000	
				Equation 4.1.8					
		Subdivision		Amount of Coal Produced (tonne)					
		S	ΔV	СР					
Philippines					1175000	2		ິ າ	X
*						2			
Total									
					1175000				

ESTIMATING POST MINING EMISSIONS FROM SURFACE COAL MINES FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT.

Step 04 : Enter the "CH₄ Emission Factor" in the sheet "Emissions from surface mines".

Coal pr	oal production from surface mines Emissions from surface mines									
Worksh Sector Catego Subca Sheet	orksheet ector: Energy ategory: Fugitive Emissions from Fuels - Solid Fuels ubcategory: 1.B.1.a.ii.2 - Post-mining seam gas emissions heet: CO2 and CH4 emissions from surface mines						00			
Gas	METHAN	E (CH4)	~							
					Equation 4.1.8					
	Subdiv	ision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)		
	S	ΔV	СР	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R		
Pl	hilippines		1175000	0.1	117500	0.0000067		0.07873		()
Total										
			1175000		117500			0.07873		

ESTIMATING TOTAL EMISSIONS FROM SURFACE COAL MINES FOR TIER 1

GENERAL EQUATION FOR ESTIMATING FUGITIVE EMISSIONS FROM SURFACE COAL MINING

 CH_4 emissions = Surface mining emissions of CH_4 + Postmining emission of CH_4

Methane emissions = Surface mining emissions of CH₄ + Post-mining emission of CH₄

- = 0.9447 Gg/year + 0.0787 Gg/year
- = 1.0234 Gg/year

NOTE : According to the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, a new section has been added to calculate the CO_2 emission from the surface mining along with emission factors.

Carbon dioxide emissions = CO_2 Emission Factor • Surface Coal Production • Conversion Factor

Low CO ₂ Emission Factor	$= 0.01 \text{ m}^3 \text{ tonne}^{-1}$	Average CO ₂ Emission
Average CO ₂ Emission Factor	$= 0.44 \text{ m}^3 \text{ tonne}^{-1}$	Factor is recommended if there is no evidence to
High CO ₂ Emission Factor	$= 0.94 \text{ m}^3 \text{ tonne}^{-1}$	select high or low emission factor.

Conversion factor = 1.84×10^{-6} Gg m⁻³

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

CO₂ emissions = Raw surface coal production * Emission Factor * Units conversion factor

Parameter	Value	Source
Raw coal production	1.175 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	0.44 m ³ tonne ⁻¹ (Average CO ₂ Emission Factor)	2019 Refinement to the 2006 IPCC Guidelines
Units Conversion Factor	1.84 * 10 ⁻⁶ Gg m ⁻³	2019 Refinement to the 2006 IPCC Guidelines

CO_2 emissions = 1.175 million tonnes/year * 0.44 m³ tonne⁻¹ * 1.84 * 10⁻⁶ Gg m⁻³

= 0.95128 Gg/year

EXAMPLE OF ESTIMATING POST CO_2 EMISSIONS FROM UNDERGROUND COAL MINES FOR TIER 1

CO₂ emissions = Raw underground coal production * Emission Factor * Units conversion factor

Parameter	Value	Source
Raw coal production	1.175 million tonnes/year (In 2000)	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf (page 34)
Emission Factor	0.4 m ³ tonne ⁻¹ (Average CO ₂ Emission Factor)	Assumed value
Units Conversion Factor	1.84 * 10 ⁻⁶ Gg m ⁻³	2019 Refinement to the 2006 IPCC Guidelines

CO_2 emissions = 1.175 million tonnes/year * 0.4 m³ tonne⁻¹ * 1.84 * 10⁻⁶ Gg m⁻³

= 0.8648 Gg/year

Coal production	from surface mines	Emissions from surface mine	5								
Sector: Category: Subcategory: Sheet:	Energy Fugitive Emissions 1.B.1.a.ii.2 - Post- CO2 and CH4 emi	from Fuels - Solid Fuels nining seam gas emissions ssions from surface mines								20	00
Gas CARBO	N DIOXIDE (CO2)	>									
Su	ubdivision	Amount of Coal Produced (tonne)	CO2 Emission Factor (m3/tonne)	CO2 Emissions (m3)	Conversion Factor (Gg CO2/m3)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)				
	S 🛆	Ф СР	EF	E(m3)=CP*EF	CF	Z	E(Gg)=E(m3)*CF-Z				
M Philippines	S	1175002	0.4	470008	0.00000184	0		0.8648	2		っ
Total											
		1175000		470000				0.8648			

environment programme

environment programme climate centre

Let's do an exercise!

Step 01 : Open the software

step 02 : Select the "1.B.1.a.ii.1 – Mining" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Surface Mines". Use the data provided in the table below.

Step 04 : Enter the "CH4 Emission Factor" in the sheet "Emissions from surface mines".

Parameter	Value	Source
Raw coal production	100000 tonne/year	_
Emission Factor	2 m ³ tonne ⁻¹ (High CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

UN () environment programme

t copenhagen climate centre

Coal production fro	om surface mine	Emissions from sur	facemines						
Sector: Category: Subcategory: Sheet: Data	Energy Fugitive Emissi 1.B.1.a.ii.1 - M CO2 and CH4	ons from Fuels - Solid Fue ning emissions from surface mi	els nes					20	00
Gas METHAN	E (CH4)	~							
				Equation 4.1.	7				
Subdiv	vision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)		
S	Δγ	СР	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R		
M Philippines		100000	2	200000	0.0000067		0.134		2
Total				_					
		100000		200000			0.134		

Step 01 : Open the software

step 02 : Select the "1.B.1.a.ii.2 – Post Mining Seam Gas Emissions" under 1.B-Fugitive emissions from fuels.

Step 03 : Enter the "subdivision" and "Amount of Coal Produced" in the sheet "Coal Production from Surface Mines". Use the data provided in the table below.

Step 04 : Enter the " CH_4 Emission Factor" in the sheet "Emissions from surface mines".

Parameter	Value	Source
Raw coal production	100000 tonne/year	Assumed value
Emission Factor	0 m ³ tonne ⁻¹ (Low CH ₄ Emission Factor)	2006 IPCC Guidelines
Units Conversion Factor	0.67 * 10 ⁻⁶ Gg m ⁻³	2006 IPCC Guidelines

environment programme

Co	bal production fr	om surface mine	Emissions from sur	rface mines							
Si Si Si	onksneet ector: ategory: ubcategory: heet: Data Gas METHAN	Energy Fugitive Emissi 1.B.1.a.ii.2 - Po CO2 and CH4 E (CH4)	ons from Fuels - Solid Fue st-mining seam gas emis emissions from surface m	els sions ines						20	00
					Equation 4.1.8	3					
	Subdiv	rision	Amount of Coal Produced (tonne)	CH4 Emission Factor (m3/tonne)	CH4 Emissions (m3)	Conversion Factor (Gg CH4/m3)	Methane recovered (Gg CH4)	CH4 Emissions (Gg CH4)			
	S	ΔV	CP	EF	E(m3)=CP*EF	CF	R	E(Gg)=E(m3)*CF-R			
ľ	Philippines		100000	0 🗸	0	0.0000067			0 📝		っ)
	otal										
			100000		0				0		

ESTIMATING TOTAL EMISSIONS FROM SURFACE COAL MINES FOR TIER 1

GENERAL EQUATION FOR ESTIMATING FUGITIVE EMISSIONS FROM SURFACE COAL MINING

 CH_4 emissions = Surface mining emissions of CH_4 + Postmining emission of CH_4

Methane emissions = Surface mining emissions of CH₄ + Post-mining emission of CH₄

= 0.134Gg/year + 0 Gg/year

= 0.134 Gg/year

ESTIMATING EMISSIONS FROM OIL PRODUCTION USING TIER 01

1. Venting

ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION-VENTING-TIER 01

Step 02: selection of emission factors - There are two different default emission factors for CO_2 for developed countries and for developing countries. The correct one should be used.

Country/Territory	Value	Unit	Lower limit	Upper limit	Emission Source
Developed Countries	0.0053	Gg per 10 [^] 3 m3	0.001325	0.009275	Venting
Developing/Transition Countries	0.0063	Gg per 10^3 m3	0.002079	0.01575	Venting

Step 03: Gathering activity data – The annual amount of oil produced in the country should be known.

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION – TIER 01

Parameter	Value	Source
Amount of oil produced	61578000 m ³	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf
Emission Factor	0.0063 Gg Per 10 ³ m ³	Default value of IPCC Inventory software

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION-TIER 01

TIER 1: ESTIMATING FUGITIVE EMISSIONS FROM AN INDUSTRY SEGMENT

$$E_{gas, industry segment} = A_{industry segment} * EF_{gas, industry segment}$$

=61578000 m³ * 0.0063 *10⁻³ Ggm⁻³
= 387.941 Gg

EXAMPLE OF ESTIMATING CH_4 EMISSIONS FROM OIL PRODUCTION – TIER 01

Parameter	Value	Source
Amount of oil produced	61578000 m ³	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf
Emission Factor	0.02 Gg Per 10 ³ m ³	Default value of IPCC Inventory software

$$E_{gas, industry segment} = A_{industry segment} * EF_{gas, industry segment}$$
$$= 61578000 \text{ m}^3 * 0.02 * 10^{-3} \text{ Ggm}^{-3}$$
$$= 1231.56 \text{ Gg}$$

EXAMPLE OF ESTIMATING N₂O EMISSIONS FROM OIL PRODUCTION – TIER 01

Parameter	Value	Source
Amount of oil produced	61578000 m ³	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf
Emission Factor	0.1 Gg Per 10 ³ m ³	Assumed value

$$E_{gas, industry segment} = A_{industry segment} * EF_{gas, industry segment}$$
$$= 61578000 \text{ m}^3 * 0.1 * 10^{-3} \text{ Ggm}^{-3}$$
$$= 6157.8 \text{ Gg}$$

ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software

step 02 : Select the "1.B.2.a.i – Venting" under 1.B-Fugitive emissions from fuels.

Step 03 : Select the "subdivision", "Industry Segment", "Subcategory", "calculation method" and "oil production" in the sheet "Activity Data" and save.

Activity Data Emissions En Worksheet Sector: Energy Category: Fugitive Em Subcategory: 1.B.2.a.i - V Sheet: Activity Dat	nissions - Tier 2 issions from Fuels - Oil 'enting a									2	00	0
			Equat	ion 4.2.1, 4.2.3								
Subdivision	Industry Segment	Subcategory	Calculation method	Oil production (10^3 m3)	Average gas-to- oil ratio (m3/m3)	Gas conservation efficiency factor	Fraction of waste gas flared	Total gas vented (10^3 m3)				
S AV		SC ∆⊽	V	AD	GOR	CE	x	V=Q*GOR*(1- CE)*(1-X)				
Philippines	Oil Production	Heavy Oil / Cold Bitum	Default	61578							2	X
*									2			
Total												
				61578				0				

ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT..

Step 04 : Select the correct "Gas" and "Emission Factor" from the sheet "Emissions".

Activity Data Worksheet Sector: Category: Subcategory Sheet: Data Gas CARBO	Emissions Energy Fugitive r: 1.B.2.a. Emission	Emissi Emissi i - Vent ns (CO2)	sions - Tier 2 ons from Fuels - Oil ting												20	00
						Equation 4.2.1										
Sub	bdivision		Industry Segment	Subcatego	ry	Activity Data (10^3 m3)	сс	2 Emission Fac (Gg/10^3 m3)	tor	Amount Ca (Gg Cl	aptured O2)	с	O2 Emissions (Gg CO2)			
:	S	ΔV	Ι Δ7	SC	ΔV	AD		EF		Z			E = A * EF - Z			
Philippine	es		Oil Production	Heavy Oil / Cold E	Bitumen	61578		0.00	63 🗸				387.94	14 📝		2
Total						Country/Territory		Value		Unit	Lower I	imit	Upper limit	Emissi	on So	urce
						ed Countries		0.0053	Gg per 10^3 m3		0.001325		25 0.009275 V		Venting	
					Developi	ng/Transition Countries		0.0063	Gg pe	er 10^3 m3	0.00	02079	0.01575	Venting		
1				·												

ESTIMATING CH₄ EMISSIONS FROM OIL PRODUCTION FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT..

ESTIMATING N₂O EMISSIONS FROM OIL PRODUCTION FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT..

Activity Data	Emissions	Emissions - Tie	er 2							
Sector: Category: Subcategory Sheet: Data Gas NITR	Energy Fugitive y: 1.B.2.a. Emission	Emissions from F i - Venting ns N2O)	-uels - Oil						20	000
					Equ	ation 4.2.1				
	Subdivisio	n	Industry Segment		Subcategory	Activity Data (10^3 m3)	N2O Emission Factor (Gg/10^3 m3)	N2O Emissions (Gg N2O)		
	S	∇	I	∇	SC V	AD	EF	E = A * EF 🛛 🛆		
M Philippir	nes		Oil Production		Heavy Oil / Cold Bitumen	61578	0.1 🗸	6157.8		っ
Total						01570		0157.0		
						615/8		6157.8		

environment programme

environment programme climate centre

Let's do an exercise!

ESTIMATING EMISSIONS FROM OIL PRODUCTION – TIER 01

Parameter	Value	Source
Amount of oil produced	1000000 m ³	Assumed value
Emission Factor for CH ₄	0.01 Gg Per 10 ³ m ³	Assumed Value
Emission Factor for CO ₂	0.005 Gg Per 10 ³ m ³	Assumed Value
Emission Factor for N ₂ O	0.3 Gg Per 10 ³ m ³	Assumed Value

Activity Data Worksheet Sector: Category: Subcategory Sheet: Data	Emissions Energy Fugitive y: 1.B.2.a Emissio	Emissions e Emissions f .i - Venting ms	s - Tier 2 from Fuels - Oil									20	00
Gas CARB	ON DIOXIDE	(CO2)	>				Equation 4.2.1						
	Subdivision		Industry Segm	ent	Subcategory		Activity Data (10^3 m3)	CO2 Emission Factor (Gg/10^3 m3)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)			
	S	Δγ	1	Δγ	sc	ΔV	AD	EF	Z	E = A * EF - Z			
M Philippin	ies		Oil Production		Heavy Oil / Cold Bitumer	ı	1000	0.005			5 🕜 🤇		2
Total											-		
							1000						

Activity Data	Emissions	Emissions - Ti	er 2											
Worksheet Sector: Category: Subcategor Sheet: Data Gas METH	Energy Fugitive y: 1.B.2.a Emissio	Emissions from i - Venting ns	Fuels - Oil									2	000	
						Equa	ation 4.2.1							
	Subdivision			ry Segment	Subcateg	ory	Activity Data (10^3 m3)	CH4 Emission Factor (Gg/10^3 m3)	CH4 Emissions (Gg CH4)					
	S	Δγ	1	Δ	∀ SC	ΔV	AD	EF	E = A * EF					
M Philippir	nes		Oil Production		Heavy Oil / Cold Bitur	men	1	000	0.01).01 10 🖃 🖬 🎐				
Total							1	000		10				

Activity Data	Emissions	Emissions - Ti	er 2										
Worksheet Sector: Category: Subcategory Sheet:	Energy Fugitive y: 1.B.2.a Emissio	Emissions from i - Venting ns	Fuels - Oil								2	2000	
Gas NITR	OUS OXIDE (N2O)											
	Equation 4.2.1												
	Subdivision Industry Segme			ment	Subcategory		Activity Data (10^3 m3)	N2O Emission Factor (Gg/10^3 m3)	N2O Emissions (Gg N2O)				
	S	Δγ	I	Δγ	SC	Δγ	AD	EF	E = A * EF				
Philippir	nes		Oil Production		Heavy Oil / Cold Bitumen		1000	0.3	30	300 🕜 🛃			
Total							1000		30	0			

2. Flaring

ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION-FLARING-TIER 01

Step 01: selection of emission factors - There are two different default emission factors for CO_2 for developed countries and for developing countries. The correct one should be used.

Country/Territory	Value	Unit	Lower limit	Upper limit	Emission Source
Developed Countries	0.022	Gg per 10^3 m3	0.0055	0.0385	Flaring
Developing/Transition Countries	0.026	Gg per 10^3 m3	0.00858	0.065	Flaring

Step 02: Gathering activity data – The annual amount of oil produced in the country should be known.

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION – FLARING USING TIER 01

Parameter	Value	Source
Amount of oil produced	61578000 m ³	https://climate.emb.gov.ph/wp- content/uploads/2016/06/GHG- Manual.pdf
Emission Factor	0.026 Gg Per 10 ³ m ³	2006 IPCC Guidelines

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION-TIER 01

ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION FOR TIER 1 FOR FLARING USING 2006 IPCC INVENTORY SOFTWARE

Step 01 : Open the software

step 02 : Select the "1.B.2.a.ii – Flaring" under 1.B-Fugitive emissions from fuels.

Step 03 : Select the "subdivision", "Industry Segment", "Subcategory", "calculation method" and "oil production" in the sheet "Activity Data".

Activity Data	Emission	ns CH	4 Emissions - Tier 2	CO	2 Emissions - Tier 2	N20	Emissions - Tier	2								
Sector: Energy 20 Category: Fugitive Emissions from Fuels - Oil 20 Subcategory: 1.B.2.a.ii - Flaring Sheet: Activity Data													200)0		
	Equation 4.2.1, 4.2.4, 4.2.5, 4.2.8															
Subdivision			Industry Segment		Subcategory		Calculation method	Oil production (10^3 m3)	Average gas-to- oil ratio (m3/m3)	Gas conservation efficiency factor	Fraction of waste gas flared	Total gas flared (10^3 m3)				
	S	۵V	I	۵V	sc	۵Ţ	V	AD	GOR	CE	х	F=Q*GOR*(1- CE)*X				
Philippi	nes		Oil Production		Heavy Oil / Cold Bit	um	Default	61578							2	X
* Total													2			
								61578				0				

EXAMPLE OF ESTIMATING CO₂ EMISSIONS FROM OIL PRODUCTION (FLARING) FOR TIER 1 USING 2006 IPCC INVENTORY SOFTWARE CONT..

Step 04 : Select the Emission Factor in the sheet "Emissions".

Activity [Data	Emissions	CH4	Emissions - Ti	ier 2 CO2 Emi	issions - Tier 2 N20) Emissi	ions - Tier 2							
Sector: Catego Subcat Sheet: Data Gas	Sector: Energy 2000 Category: Fugitive Emissions from Fuels - Oil 2000 Subcategory: 1.B.2.a.ii - Flaring 2000 Sheet: Emissions 2000 Data CARBON DIOXIDE (CO2) V														
								Equation 4.2.1							
	Subdivision			industry Segment		Subcategory		Activity Data (10^3 m3)	CO2 Emission Factor (Gg/10^3 m3)		Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)			
		S	ΔV	- I	ΔV	SC	Δγ	AD		EF	Z	E = A * EF - Z			
Ph	ili, pir	nes		Oil Productio	on	Heavy Oil / Cold Bit	umen	61578		0.026 ~		1601.028			2
Total	-							C1570				1601 020			
By se	Total 61578 By selecting CH ₄ and N ₂ O with particular emission factor, emissions of those gases can be calculated														

Eng. H.M. Buddika Hemashantha

MRV Transparency Advisor to CBIT GSP +44 7359 23 7074, +94 770 320 110 buddika@climatesi.com