

Capacity Building Initiative for Transparency - Global Support Programme (CBIT-GSP) : Asia Region

Methodological Choice and Identification of Key Categories

Uncertainty Analysis

Jaypalsinh Chauhan

Asia Transparency Network Coordinator

18 March 2023

- Tiers: A tier represents a level of methodological complexity.
- Usually three tiers are provided:
 - Tier 1 is the basic method,
 - Tier 2 intermediate and
 - Tier 3 most demanding in terms of complexity and data requirements
- Tiers 2 and 3 are sometimes referred to as <u>higher tier methods</u> and are generally considered to be more accurate

- Methodological choice for individual source and sink categories is important in managing overall inventory uncertainty (it is lower when emissions and removals are estimated using the most rigorous methods)
- However, these methods generally require more extensive resources for data collection, so it may not be feasible to use more rigorous method for every category (therefore it is *good practice* to identify those categories that have the greatest contribution to overall inventory)
- By identifying these <u>key categories</u> in a systematic and objective manner, inventory compilers can prioritise their efforts and improve their overall estimates (it is <u>good</u> <u>practice</u> to use results of key category analysis as a basis for methodological choice to improve inventory quality and to increase confidence in the GHG estimates)

A *key category* is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of:

- the absolute level,
- the trend, or
- the uncertainty in emissions and removals.

Key categories should be the priority for countries during inventory resource allocation for data collection, compilation, quality assurance/quality control and reporting.

In general, more detailed higher tier methods should be selected for key categories.

CLIMATE TRANSPARENCY How to Define Key Categories

- Disaggregate categories to the lowest possible level:
 - to sub-category (e.g., to a fuel type liquid, gaseous, solid)
 - to individual gas (use GWP).
- Apply two Approaches:
 - Approach 1 Level and Trend Assessment
 - Approach 2 Level/Trend + Uncertainty Assessment
- Approach 1 Level and Trend Assessment: Key categories - 95% cumulative effect
- Approach 2 Level/Trend + Uncertainty Assessment: Key categories - 90% cumulative effect
- *Removals:* expressed as positive numbers

(inclusion/exclusion)

Example of Level Assessment

			Emission/ Removal	Absolute
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO_2	10000	10000
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO_2	200	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO ₂	1300	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO_2	123	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO_2	5502	5502
3A2	Manure Management	CH_4	543	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345
3B1b	Land Converted to Forest Land	CO ₂	879	879
				20892

Example of Level Assessment

			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO ₂	10000	10000	47.9%
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO ₂	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO ₂	1300	1300	6.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO ₂	123	123	0.6%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%
3A2	Manure Management	CH_4	543	543	2.6%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%
				20892	

Example of Level Assessment

(f)

environment

programme

gef

			Emission/ Removal	Absolute	Level	Cumulative
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO ₂	10000	10000	47.9%	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%	74.2%
3B1a	Forest Land Remaining Forest Land	CO_2	-2345	2345	11.2%	85.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO ₂	1300	1300	6.2%	91.6%
3B1b	Land Converted to Forest Land	CO_2	879	879	4.2%	95.8%
3A2	Manure Management	CH_4	543	543	2.6%	98.4%
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO ₂	200	200	1.0%	99.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO ₂	123	123	0.6%	100.0%
				20892		

- The trend assessment identifies categories whose trend is different from the trend of the total inventory, regardless whether category trend is increasing or decreasing, or is a sink or source.
- Categories whose trend diverges most from the total trend should be identified as key, when this difference is weighted by the level of emissions or removals of the category in the base year.

CBIT-GSP Example of Trend Assessment

IPCC Category	IPCC Category	Greenhouse	E _{x,0}	E _{x,t}	Trend assessment	% Contribu-	Cumulative Total of Column G	
Code		Gas	(Gg CO ₂ eq)	(Gg CO2 eq)	T _{x,t}	tion to Trend		
1A1	Energy Industries: Solid	CO ₂	9 279	17 311	0.086	0.194	0.194	
1A1	Energy Industries: Peat	CO ₂	3 972	9 047	0.060	0.135	0.329	
1A1	Energy Industries: Gas	CO ₂	2 659	6 580	0.048	0.107	0.436	
1A4	Other Sectors: Liquid	CO ₂	6 714	5 651	0.035	0.078	0.514	
1A2	Manufacturing Industries and Construction: Solid	CO ₂	6 410	5 416	0.033	0.074	0.588	
4A	Solid Waste Disposal	CH_4	3 678	2 497	0.028	0.062	0.650	
3C4	Direct N ₂ O Emissions from Managed Soils	N ₂ O	3 513	2 619	0.023	0.052	0.702	
1A3b	Road Transportation	CO ₂	10 800	11 447	0.023	0.051	0.752	
1A2	Manufacturing Industries and Construction: Liquid	CO ₂	4 861	4 736	0.016	0.036	0.788	
3A1	Enteric Fermentation	CH ₄	1 868	1 537	0.010	0.023	0.811	
2F1	Refrigeration and Air Conditioning	HFCs, PFCs	0	578	0.008	0.018	0.830	
2 B 2	Nitric Acid Production	N ₂ O	1 595	1 396	0.008	0.017	0.846	
3C2	Liming	CO ₂	618	277	0.007	0.015	0.861	
2A1	Cement Production	CO ₂	786	500	0.006	0.014	0.876	
1A2	Manufacturing Industries and Construction: Peat	CO ₂	1 561	1 498	0.005	0.012	0.888	
1A2	Manufacturing Industries and Construction: Gas	CO ₂	2 094	2 174	0.005	0.011	0.899	
1A3b	Road Transportation	N ₂ O	160	516	0.005	0.010	0.909	
3C5	Indirect N ₂ O Emissions from Managed Soils	N ₂ O	735	592	0.004	0.009	0.919	
3A2	Manure Management	N ₂ O	623	461	0.004	0.009	0.928	
1A5	Non-Specified: Liquid	CO ₂	734	1 083	0.003	0.006	0.934	
3C1	Biomass Burning	CO ₂	180	91	0.002	0.004	0.938	
1A3e	Other Transportation	CO ₂	644	651	0.002	0.004	0.942	
1A4	Other Sectors: Gas	CO ₂	98	225	0.001	0.003	0.946	
1A3c	Railways	CO ₂	191	134	0.001	0.003	0.949	
1A5	Non-Specified: Gas	CO ₂	222	363	0.001	0.003	0.952	
Total			70 692	85 352	0.445	1		

environment programme

- *Key categories* are extremely important:
 - Mistakes will lead to significant under-/over- estimates
 - Improvements will significantly improve overall inventory quality
- Higher tiers (Tier 2 and Tier 3) should be used for estimating key categories
- Resources of national inventory compilers are (in many cases)
 limited → focus on key categories

Reporting requirements for uncertainty analysis in national
 GHG inventories under the ETF

Parties shall...

- submit 1st BTR at the latest 31 December 2024 (<u>18/CMA.1</u>) Least developed country Parties and small island developing States may submit at their discretion.
- Use the 2006 IPCC Guidelines uncertainty estimates are an essential element of a complete inventory of GHG emissions and removals. They should be derived for both the national level and the trend estimate, as well as for the component parts such as emission factors, activity data and other estimation parameters for each category.
- quantitatively estimate uncertainty and qualitatively discuss uncertainty for emission, removal estimates for all categories, including inventory totals for at least the starting year and latest year of the inventory time series.
- also estimate the trend uncertainty use at least approach 1.
- Flexibility for developing countries Parties that need it in the light of their capacity, provide, at a minimum, a qualitative discussion of uncertainty for key categories where quantitative input data are unavailable to quantitatively estimate uncertainties and encourage to provide quantitative estimate of uncertainty.

Reporting requirements for uncertainty analysis in national GHG inventories under the ETF

Parties shall...

- Time series
 - o report consistent time series from 1990 (with flexibility)
 - report latest reporting year T-2 (T-3 with flexibility)
- report recalculations for starting year and all subsequent years of time series together with justification and impact of recalculations
- identify key category for the starting year and the latest reporting year including and excluding LULUCF categories, using approach 1, for both level and trend assessment (with flexibility)
- report on institutional arrangements (e.g., planning, preparation and management) – uncertainty data collection, academia, statistics office
- develop a QA/QC plan (with flexibility)
- report basket of 7 gases CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, NF3 (with flexibility), using AR5 GWP values (<u>IPCC WGI AR5 Chapter08,</u> <u>Table 8.A.1</u>)

Vol. 1 - Ch. 3: uncertainty Vol. 1 - Ch. 4: KCA based on uncertainty Vol. 1 - Ch. 5: Splicing techniques

Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories

- Chapter 1 Introduction
- Chapter 2 Energy
- Chapter 3 Industrial Processes
- Chapter 4 Agriculture
- Chapter 5 Waste
- Chapter 6 Quantifying Uncertainties in Practice
- Chapter 7 Methodological Choice and Recalculation
- Chapter 8 Quality Assurance and Quality Control

General approach

Uncertainty

Lack of knowledge of the true value of a variable that can be described as a probability density function (PDF). Uncertainty depends on the analyst's state of knowledge, which in turn depends on the quality and quantity of applicable data as well as knowledge of underlying processes and inference methods.

Uncertainty analysis

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to reduce the uncertainty of inventories in the future, and guide decisions on methodological choice. Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions and removals estimates for individual categories and for the total inventory

Uncertainty assessment

The term "ASSESSMENT" is intended to convey an exercise that includes the investigation of quantitative and qualitative aspects. In the glossary to the Guidelines, "uncertainty analysis" is defined as only a quantitative exercise.

Key concepts

Confidence interval: range that encloses the true, but unknown value, with a determined confidence (probability). Typically, a 95 percent confidence interval is used in greenhouse gas inventories.

Alternative interpretation: Range that may safely be declared to be consistent with observed data or information

Probability Density Function (PDF): describes the range and relative likelihood of possible values.

For emission inventory, it is used to describe uncertainty in the estimate of a quantity that is a fixed constant whose value is not exactly known.

Sensitivity analysis: method to determine which of the input uncertainties to an inventory contributes most substantially to the overall uncertainty.

Lack of knowledge of the true value

How far is the true value from the value used?

Accuracy (systematic errors or bias) vs. Precision (random errors)

(a) inaccurate but precise; (b) inaccurate and imprecise; (c) accurate but imprecise; and (d) precise and accurate

Linear Error Propagation (LEP)

										- 1	Data Calci	ulated using	1
		Ent	er Emis	sions I	Data					-	simple	equations	,
					A	PPROACH 1 UN	TABLE 3.2 NCERTAINTY C	ALCULATION			1 /		
А	В	С		Е	F	G	Н	Ι	J		К	L	М
IPCC category	Gas	Base year emissions or removals	Year <i>t</i> emissions or removals	Activity data uncertainty	Emission factor / estimation parameter uncertainty	Combined uncertainty	Contribution to Variance by Category in Year t	Type A sensitivity	Type B sensitivity	y in in er es u	certainty ir trend national e nissions roduced by nission f letor / timation parameter certainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
		Input data	Input data	Input data Note A	Input data Note A	$\sqrt{E^2 + F^2}$	$\frac{(\mathbf{G} \bullet \mathbf{D})^2}{\left(\sum \mathbf{D}\right)^2}$	Note B	$\frac{D}{\Sigma C}$		I•F Note C	$J \bullet E \bullet \sqrt{2}$ Note D	$K^2 + L^2$
		Gg CO ₂ equivalent	Gg CO ₂ equivalent	%	%	%		%	%		%	%	%
E.g., 1.A.1. Energy Industries Fuel 1	CO ₂												
E.g., 1.A.1. Energy Industries Fuel 2	CO ₂												
Etc													
Total		ΣC	ΣD				ΣH						$\sum M$
					Percentage un total inventory	certainty in 7:	$\sqrt{\Sigma H}$					Trend uncertainty:	$\sqrt{\sum M}$

S COMMENT AND REAL
L RESOLUTION
90.1987 . 632

				Approach	1 uncertainty c	alculation						
А	В	С	D	Е	F	G	Н	Ι	J	K	L	М
IPCC category	Gas	Base year	Year t emissions	Activity data	Emission factor /	Combined	Contribution to	Type A	Type B	Uncertainty in	Uncertainty in	Uncertainty
		emissions or	or removals	uncertainty	estimation	uncertainty	Variance by	sensitivity	sensitivity	trend in national	trend in national	introduced into
		removals			parameter		Category in					the trend in total
AD uncortainties b			uncertainty			EF un	certaint	ies ba	sed 🛛	emissions		
AD uncertainties b	a50	a 🖊	L .					•	n data	ueed		
on source of da	ta							0	n uata	usea		
	-											
							$(c, p)^2$	N. D				L
		Input data	Input data	Input data	Input data	$\sqrt{F^2 + F^2}$	$\frac{(G \bullet D)}{(\Sigma D)^2}$	Note B		I • F	InFe./2	$K^2 + L^2$
		Gg CO ₂	Gg CO ₂				(2.0)		12 0 1	1.1	3012042	K TL
		equivalent	equivalent	%	%	%		%	%	%	%	%
1 A 1 Energy Industries	СНИ	35 5346662	32 0051217	5	25	25.50	0.0	3.20506E-05	0.00010495	0.000801264	0.000742109	1.19275E-0
1.A.2. Manufacturing Industries and Construction		57 0302800	51 8776006	5	25	25.50	0.0	4 80131E-05	0.000165011	0.001200328	0.001166804	2 80222E-(
1 A 3 Transport		81 7067834	37 1466612	5	25	25.50	0.0	-4.94664E-05	0.000118155	-0.00123666	0.000835483	2.22736E-0
1 A 4 Other Sectors	СН4	1011 24025	128 554682	5	25	25.50	0.0	-0.000772946	0.001363136	-0.019323647	0.009638828	0.0004663
1 A 5 Other	CH4	330 338228	97 5658895	5	25	25.50	0.0	-0.000367351	0.000310335	-0.009183772	0.002194401	8 91571E-
1 B 1 Solid Fuels	CH4	24867 6834	12364 38	10	25	26.93	2.3	-0.011678579	0.039328314	-0.291964463	0.556186352	0.3945865
1 B 2 Oil and Natural Gas	CH4	12570 348	4022 34735	10	25	26.93	0.3	-0.012988732	0.012794183	-0.324718297	0.180937071	0.1381801
2 B Chemical Industry	CH4	40 53	37 5018	10	25	26.93	0.0	3.61373E-05	0.000119285	0.000903433	0.001686942	3.66196E-
4 A Enteric Fermentation	CH4	14054 9863	7346.85	15	30	33.54	1.5	-0.005462727	0.023368679	-0.163881819	0.495724537	0.2726000
4 B Manure Management	CH4	1903 28061	1199 63088	15	30	33.54	0.0	-8.88245E-05	0.003815756	-0.002664735	0.080944413	0.0065590
4 C Rice Cultivation	CH4	522.9	338.94	10	30	31.62	0.0	5.3609E-06	0.001078092	0.000160827	0.015246523	0.0002324
4 F Field Burning of Agricultural Residues	CH4	64 3314				6	0.0	-1.24107E-05	0.000119565	-0.000372321	0.003381819	1.15753E-
6.A. Solid Waste Disposal on Land.	CH4	1959.72	37:	ist of s	ourcol	sinke 4	0.4	0.00787088	0.011891742	0.236126385	0.252261939	0.1193917
6.B. Wastewater Handling.	CH4	787.08	72	151 01 5	ource/	3111N3 4	0.0	0.000761896	0.002376612	0.022856865	0.050415547	0.0030641
1.A.1. Energy Industries	CO2	102607.31	9596			17	11.3	0.094441853	0.305249301	0.472209267	2.158438506	4.8818383
1.A.2. Manufacturing Industries and Construction	or CO2	33991.06	30164		5	7.07	1.1	0.02618491	0.095945987	0.130924551	0.678440577	0.4774228
1.A.3. Transport	CO2	23987.07	v 1 06.48	5	5	7.07	0.1	-0.022453294	0.026739124	-0.11226647	0.189074157	0.04835279
1.A.4. Other Sectors	CO2	47,532.52	11784.04	5	5	7.07	0.2	-0.053800014	0.037482383	-0.269000072	0.265040472	0.1426074
1.A.5. Other	CO2	8370.16	4124.19	5	5	7.07	0.0	-0.004052209	0.013118122	-0.020261045	0.092759127	0.0090147
1.B.2. Oil and Natural Gas	CO2	3408.21	5171.49583	10	15	18.03	0.2	0.009456387	0.016449366	0.141845811	0.232629165	0.0742365
2.A. Mineral Products.	CO2	5744.63	2507.20146	10	15	18.03	0.0	-0.003809586	0.007974844	-0.057143788	0.112781331	0.01598504
2.B. Chemical Industry.	CO2	1355.56	171.93456	10	15	18.03	0.0	-0.002233954	0.000546885	-0.033509311	0.007734125	0.00118269
2.C. Metal Production.	CO2	12932.6799	10507.4715	10	15	18.03	0.9	0.006887639	0.033421905	0.103314586	0.47265712	0.23407865
5.A. Changes in Forest and Other Woody Biom	a CO2	97.19		50	80	94.34	0.0	-0.000199385	0	-0.015950798	0	0.0002544
5.A. Changes in Forest and Other Woody Biom	a CO2	-7810.79	-7721.7341	50	80	94.34	12.9	-0.008539362	0.024561101	-0.683148991	1.736732102	3.4829309
5.B. Forest and Grassland Conversion.	CO2	6.26	280.43888	25	75	79.06	0.0	0.00087917	0.000892013	0.065937785	0.031537424	0.0053424
1.A.1. Energy Industries	N20	38 <mark>8.516902</mark>	328.741673	5	50	50.25	0.0	0.000248607	0.001045653	0.012430334	0.007393886	0.0002091
1.A.2. Manufacturing Industries and Construction	or N2O	11 <mark>2.709781</mark>	114.844426	5	50	50.25	0.0	0.000134069	0.000365294	0.006703468	0.002583021	5.16085E-
1.A.3. Transport	N20	57.3319301	21.6195922	5	50	50.25	0.0	-4.88495E-05	6.87671E-05	-0.002442474	0.000486257	6.20212E-0
1.A.4. Other Sectors	N20	19 <mark>4.497577</mark>	46.1816455	5	50	50.25	0.0	-0.000252117	0.000146893	-0.01260587	0.001038693	0.00015998
1.A.5. Other	N20	27 <mark>.4386549</mark>	13.5195061	5	50	50.25	0.0	-1.3288E-05	4.30025E-05	-0.000664398	0.000304074	5.33886E-0
4.B. Manure Management.	N20	375.1	198.4	15	30	33.54	0.0	-0.000138451	0.000631066	-0.004153541	0.013386927	0.00019646
4.D. Agricultural Soils(2).	N20	25217.694	9798.17	20	30	36.06	3.0	-0.020551916	0.031165777	-0.616557485	0.881501284	1.15718764
4.F. Field Burning of Agricultural Residues.	N20	24.304	21.297	20	30	36.06	0.0	1.78812E-05	6.7741E-05	0.000536437	0.001916004	3.95884E-0
6.B. Wastewater Handling.	N20	452.6	384.4	15	30	33.54	0.0	0.000294175	0.00122269	0.008825264	0.025937172	0.00075062
Keep Blank!		-								0		
Total		314388.7626	202771.1719			$\sum H$	34.0	6			ΣM	11.467004
					Percentage uncert	ainty in total	5 99074047				Trend	2.28620454
					inventory:		3.880/404/2	4			uncertainty:	3.38029036

environment programme

copenhagen climate centre

Uncertainty assessment

- It is a means to help prioritise national efforts to reduce the uncertainty of inventories in the future
- It guides decisions on methodological choice
- It helps understand the quality of the information use
- It is a requirement of GHG Inventories

Assessment of uncertainty in the input parameters should be part of the data collection

Welcome to the Climate Transparency Platform

LEARN MORE

Thank you for your attention !

CBIT-GSP CLIMATE TRANSPARENCY

Please reach out to us for any question, comments or suggestions!

CBIT-GSP Asia Network Coordinator

Jaypalsinh CHAUHAN jaypalsinh.chauhan@un.org

CBIT-GSP Global Coordinator

Fatima-Zahra TAIBI fatima-zahra.taibi@un.org

Susanne KONRAD susanne.konrad@un.org

CBIT-GSP

Project Officer

CBIT-GSP Transparency Officer

Khetsiwe KHUMALO khetsiwe.khumalo@un.org

CBIT-GSP Project Officer

UN () environment programme

copenhagen climate centre