

GHG Emissions: Industrial Processes and Product Use (IPPU)

16 – 19 April 2024

Belize

Brittany Meighan Rancharan

Regional Network Coordinator – Anglophone Caribbean

CBIT-GSP

supported by

Agenda Day 3

	Day 03 - 19/03/2024 (Waste Sector)					
09:00:9:15	Registration, Recap Day 2 and Agenda for Day 3	Faciliator				
09:15 – 10:30	IPPU ODS and Exercise	CBIT-GSP				
10:15– 10:30	Coffee Break					
10: 30 – 10: 45	Overview of Belize's Waste Sector GHG Inventory	Host Country				
10:45 – 12:00	General Overview of Waste Sector	CBIT-GSP				
12:00 - 13:00	Lunch Break					
13:00 - 14:00	Recap exercise	CBIT-GSP				
14:00 - 14:45	Open session led by NCCO	All Participants				
14:45 – 15:00	Coffee Break					
15:00 - 15:15	Main learnings and evaluation of the event – next steps	Organizers and Host Country				
15:15- 16:00	Closing of the Session	Organizers and Host Country				

Outline

- 1. IPPU importance
- 2. What is the IPPU Sector?
- 3. IPPU Categories:
 - 2A: Mineral Industry (Cement, Lime)
 - 2B: Chemical Industry
 - 2C: Metal Industry

2D: Non-Energy Products from Fuels & Solvent Use (Asphalt, Lubricants, Paraffins, Solvents)

2E: Electronics Industry

2F: Product Uses as Substitutes for Ozone Depleting Substances (Refrigerations, Air Conditioning, Aerosols)

2G: Other Product Manufacture and Use (Electrical Eq., Military Apps, Medical Apps)

- 4. IPPU Activity Data
- 5. Conclusion

Activities within the IPPU Sector in Belize

Greenhouse Gas Source Categories in the IPPU Sector	Status
A. Mineral Products	
1. Cement Production	Not occurring
2. Lime Production	Present
3. Limestone and Dolomite Use	present
6. Road Paving with Asphalt	Present
B. Chemical Industry	Not occurring
C. Metal Production	Not occurring
D. Other Production	
 Food and Drink 	
production of beer, wine, spirits	Present
production of meat, fish, poultry	Present
production of bread	Present
production of animal feed	Present
E. Consumption of Halocarbons and Sulphur Hexafluoride	Not present
 Refrigeration and Air Conditioning Equipment 	Present

Cement Production is a recent activity*

Importance for Non-Annex I Parties

- IPPU sector is considered to be less significant compared to Energy and AFOLU
- Situation varies from country to country
- IPPU sources may become significant in the future as developing countries' economies and industries grow
- Inclusion of F-gases estimates can contribute significantly to the IPPU emissions and influence the total estimates
- IPPU emissions estimation is important to find opportunities for GHG abatement

IPPU Sector

IPPU – GHG emissions:

- **1. Industrial Processes**
- 2. Product Use

1. Industrial Processes that chemically or physically transform materials releasing GHG:

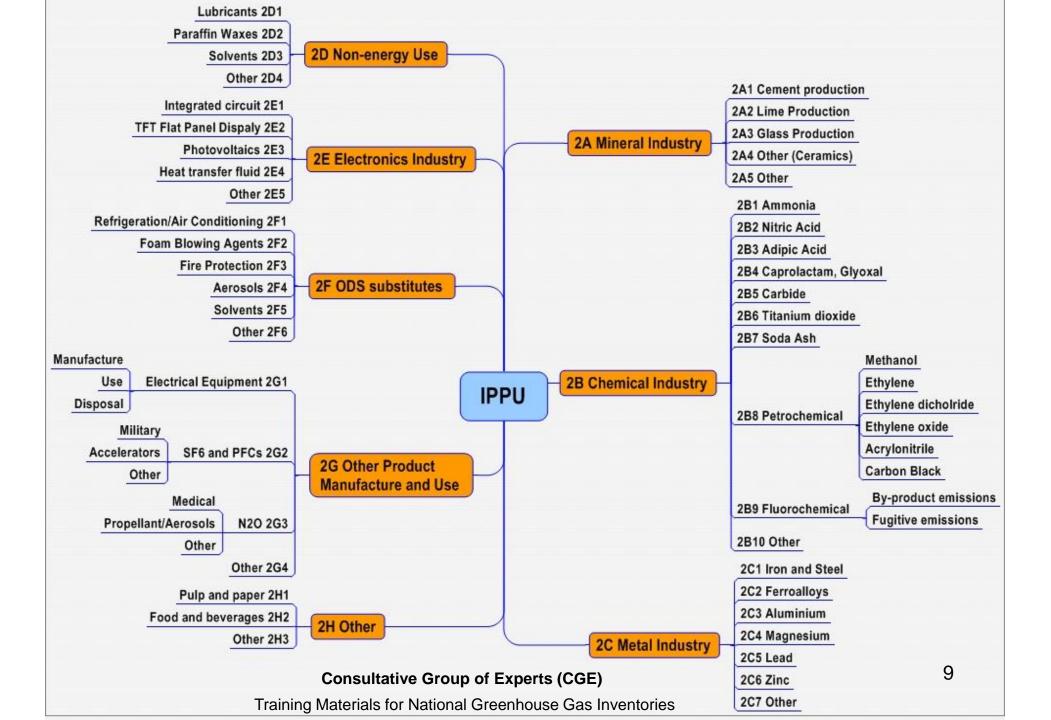
- chemically: $NH_3 + O2 = 0.5 N_2O\uparrow + 1.5 H_2O$ (nitric acid production)
- physically: $CaCO_3$ + (Heat) = CaO + CO₂↑

2. Product Use: GHGs are used in products such as refrigerators, foams or aerosol cans

Note: significant time can elapse between the manufacture of the product and the release of GHG. The delay can vary from a few weeks (e.g., for aerosol cans) to several decades (e.g., rigid foams). In refrigeration a fraction of GHG used in the products can be recovered at the end of product's life and either recycled or destroyed.

Not IPPU:

- ➤ Emissions from Fuel combustion in Industrial Sector for energy purposes (e.g., cement production) → Energy Sector
- ➢ Fugitive emissions in Oil/Gas industries → Energy Sector
- > Solvents & other products incineration without energy recovery -> Waste Sector


Demarcation: IPPU vs. Energy

<u>Combustion emissions</u> from fuels obtained from the <u>feedstock</u> for an IPPU process will normally be allocated the source category in which the process occurs (*these source categories are normally 2B and 2C*). However, if the derived fuels are transferred for combustion in another source category, the emissions should be reported in the appropriate part of the Energy Sector (*normally 1A1 or 1A2*).

Example:

if blast furnace gas is combusted entirely within the Iron and Steel industry (whether for heating blast air, site power needs or for metal finishing operations) the associated emissions are reported in the IPPU source subcategory 2C1. If part of the gas is delivered to a nearby brick works for heat production or a main electricity producer then the emissions are reported in the Energy source subcategories (1A2f or 1A1a).

✓ Box 1.1 Chapter 1, Volume 3 2006 IPCC Guidelines

2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF ₆	Other halo- genated Gases (Note3)
2A Mineral Industry							
2A1: Cement Production	Х	×					
2A2: Lime Production	Х	*					
2A3: Glass Production	X	*					
2A4: Other Process Uses of Carbonates					_		
2A4a: Ceramics	Х	×					
2A4b: Other Uses of Soda Ash	Х	*					
2A4c: Non Metallurgical Magnesia Production	Х	*					
2A4d: Other	Х	*					
2A5: Other	Х	×	*				
2B Chemical Industry							
2B1: Ammonia Production	Х	*	*				
2B2: Nitrie Acid Production	*	*	X				
2B3: Adipic Acid Production	÷	×	Х				
2B4: Caprolactam, Glyoxal and Glyoxylic Acid Production	*	×	X				
2B5: Carbide Production	Х	X	*				
2B6: Titanium Dioxide Production	Х	*	*				
2B7: Soda Ash Production	Х	*	*				
2B8: Petrochemical and Carbon Black Production							_
2B8a: Methanol	Х	X	*				
2B8b: Ethylene	Х	X	*				
2B8c: Ethylene Dichloride and Vinyl Chloride Monomer	Х	X	×				
2B8d: Ethylene Oxide	Х	Х	*				
2B8e: Acrylonitrile	Х	X	*				
2B8f: Carbon Black	Х	X	*				
2B9: Fluorochemical Production (Note 4)							
2B9a: By-product Emissions (Note 5)				Х	Х	Х	X
2B9b: Fugitive Emissions (Note 5)				Х	Х	Х	Х
2B10: Other	*	*	*	*	*	*	×

2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF6	Other halo- genated Gases (Note3)
2C Metal Industry							
2C1: Iron and Steel Production	Х	Х	×				
2C2: Ferroalloys Production	X	Х	×				
2C3: Aluminium Production	X	×			Х		
2C4: Magnesium Production (Note 6)	X			Х	Х	Х	Х
2C5: Lead Production	Х						
2C6: Zine Production	Х						
2C7: Other	×	×	×	×	×	¥	×
2D Non-Energy Products from Fuels and Solvent Use (Note 7)							
2D1: Lubricant Use	Х						
2D2: Paraffin Wax Use	Х	×	×				
2D3: Solvent Use ^(Note 8)							
2D4: Other (Note 9)	*	×	×				
2E Electronics Industry		-					
2E1: Integrated Circuit or Semiconductor (Note 10)	*		×	Х	Х	Х	Х
2E2: TFT Flat Panel Display (Note 10)				X	Х	Х	Х
2E3: Photovoltaics (Note 10)				X	Х	Х	Х
2E4: Heat Transfer Fluid ^(Note 11)							Х
2E5: Other	*	×	×	×	ż	*	×

2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF6	halo- genated Gases (Note3)
2F Product Uses as Substitutes for Ozone Depleting Substa	nces						
2F1: Refrigeration and Air Conditioning							
2F1a: Refrigeration and Stationary Air Conditioning	*			Х	Х		*
2F1b: Mobile Air Conditioning	*			Х	X		*
2F2: Foam Blowing Agents	*			Х	*		×
2F3: Fire Protection	*			X	Х		×
2F4: Aerosols				Х	Х		×
2F5: Solvents (Note 12)				Х	Х		×
2F6: Other Applications	×	*	×	Х	X		÷
2G Other Product Manufacture and Use							
2G1: Electrical Equipment							
2G1a: Manufacture of Electrical Equipment (Note 13)					Х	Х	÷
2G1b: Use of Electrical Equipment (Note 13)					Х	Х	*
2G1c: Disposal of Electrical Equipment (Note 13)					Х	Х	×
2G2: SF ₆ and PFCs from Other Product Uses							
2G2a: Military Applications					×	Х	÷
2G2b: Accelerators (Note 14)					*	Х	÷
2G2c: Other					X	Х	*
2G3: N ₂ O from Product Uses							
2G3a: Medical Applications			Х				
2G3b: Propellant for Pressure and Aerosol Products			Х				
2G3c: Other			Х				
2G4: Other	*	*		×			*
2H Other							
2H1: Pulp and Paper Industry (Note 15)	*	*					
2H2: Food and Beverages Industry (Note 15)	*	÷					
2H3: Other	*	*	*				

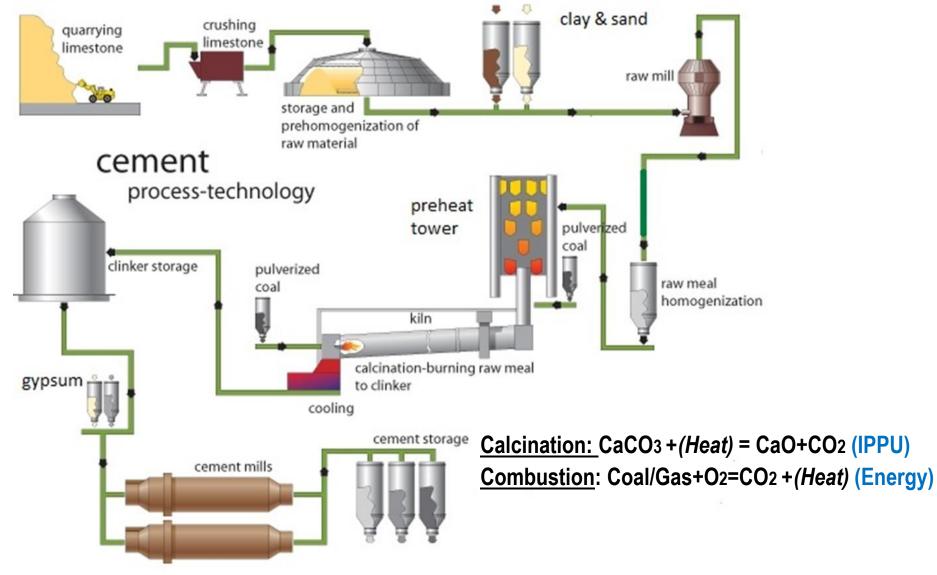
Other

IPPU Gases (CO₂, CH₄, N₂O, HFCs, PFCs, SF₆ and NF₃)

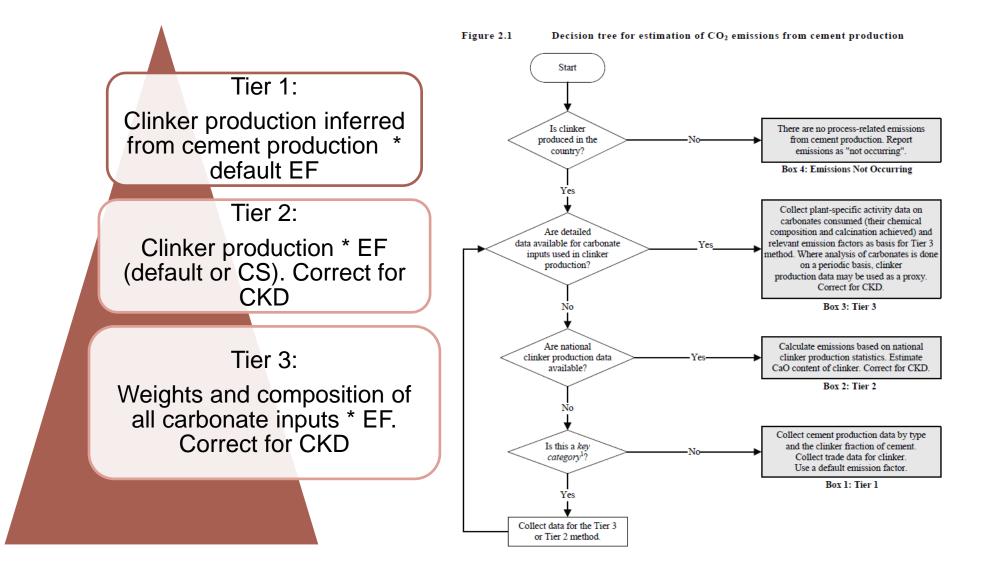
> A wide variety of gases:

- CO₂, CH₄, N₂O
- HFCs, PFCs, SF₆
- Other halogenated gases
- Ozone/aerosol precursors (e.g., NMVOCs)
- > H₂O and gases controlled by the Montreal Protocol (e.g., CFCs, HCFCs) are not included

> Under the UNFCCC, non-Annex I Parties:


- should report CO₂, CH₄ and N₂O
- are encouraged to report HFCs, PFCs, SF₆ and precursors
 - Inclusion of F-gases is important because of their high global warming potential (GWP), substantial use in industrial processes and in households, significant opportunities for GHG abatement

2A: Mineral Industry

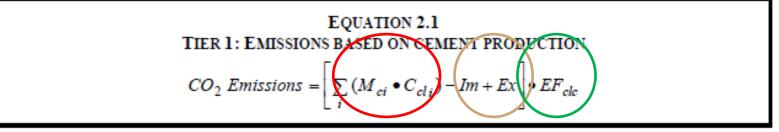

- Transformation of carbonate-contained compounds limestone, dolomite, etc. (CaCO₃, MgCO₃, Na₂CO₃)
- CO₂ Emissions

Code	Category	Default EF
2A1:	Cement Production	0.51 t CO ₂ /t clinker
2A2:	Lime Production	0.75 t CO ₂ /t lime
2A3:	Glass Production	0.20 t CO ₂ /t glass
2A4:	Other Process Uses of Carbonates	
2A4a:	Ceramics	Chapter 2.5
2A4b:	Other Uses of Soda Ash	0.41 t CO ₂ / t soda ash
2A4c:	Non Metallurgical Magnesia Production	0.52 t CO ₂ /t magnesite
2A4d:	Other	
2A5:	Other	

2A1: Cement Production

Cement production: Methodological Choice

CO₂ from Cement Production (Tier 1)


 CO_2 Emissions = AD clinker production x EF clinker CO_2 Emissions = [$\Sigma(M_{c,i} \times C_{Cl,i})$ – Im + Ex] x EF_{Clc}

- $M_{c,i}$ mass of cement produced of type *i*, tonnes
- $C_{Cl,i}$ clinker fraction of cement type *i*, fraction
- Im imports for consumption of clinker, tonnes
- Ex exports of clinker, tonnes
- EF_{Clc} emission factor for clinker, tonnes CO_2 /tonne clinker

Default EF_{Clc} = 0.52 tonnes CO₂/tonne clinker

(corrected for cement kiln dust (CKD))

Cement production: Tier 1

Where:

- CO2 Emissions = emissions of CO2 from cement production, tonnes
- M_{ci} = weight (mass) of cement produced³ of type *i*, tonnes
- C_{cli} = clinker fraction of cement of type *i*, fraction
- Im = imports for consumption of clinker, tonnes
- Ex = exports of clinker, tonnes
- EF_{clc} = emission factor for clinker in the particular cement, tonnes CO₂/tonne clinker The default clinker emission factor (EF_{clc}) is corrected for CKD.
- Estimate clinker based on type of cements (Portland, masonry, etc.

 Table 2.2 of 2006 IPCC GL) and clinker fraction in cement type
- 2. Correct for imports/exports
 - 3. Apply default EF to national clinker production

```
EF = 0.52 t CO<sub>2</sub>/t
clinker
```

If detailed information on cement type is not available, multiply total cement production by:

■ Default C_{cl} = 0.75 (if blended/'masonry' is much)

Default C_{cl} = 0.95 (if all is essentially 'Portland')

CO₂ from Cement Production (Tier 2)

<u>Tier 2</u> includes a correction addition for emissions associated with Cement Kiln Dust (**CKD**) not recycled to the kiln which is considered to be 'lost' and associated emissions are not accounted for by the clinker:

```
CO2 Emissions = M<sub>cl</sub> x EF<sub>cl</sub> x CF<sub>CKD</sub>
CFCKD = 1 + (Md / Mcl) * Cd * Fd * (EFc / EFcl)
```


CFCKD - emissions correction factor for CKD, dimensionless

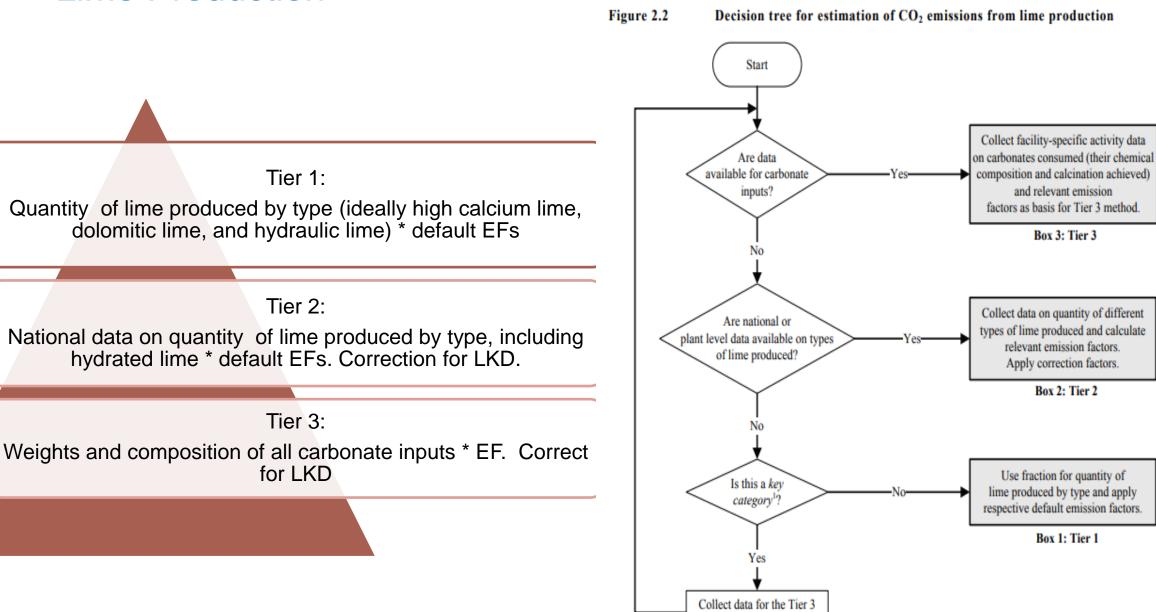
- Md weight of CKD not recycled to the kiln, tonnes
- Mcl weight of clinker produced, tonnes
- **Cd** fraction of original carbonate in the CKD (i.e., before calcination), fraction
- Fd fraction calcination of the original carbonate in the CKD, fraction
- **EFc** emission factor for the carbonate, tonnes CO₂/tonne carbonate
- **EFcl** emission factor for clinker uncorrected for CKD, tonnes CO₂/ tonne clinker (i.e., 0.51)

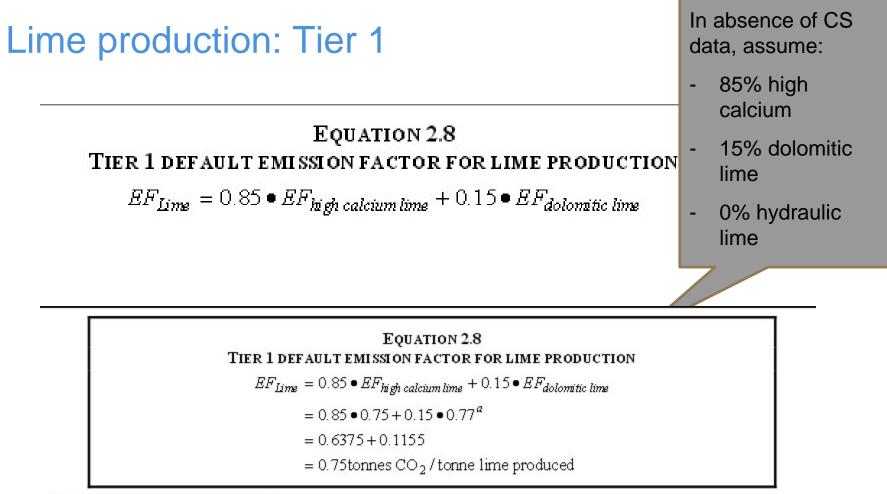
Cross-cutting issues

Completeness

- > That all plants are included
- Be sure that only process-related emissions are included
- To make clear if clinker or cement production was used as activity data and if export/imports are accounted for
- > Consistent time-series e.g. detailed data available only for some years
- Variability of AD to check the cement composition and blends used (since EF may be quite lower)
- Uncertainty 35% for Tier 1, 1-2% Tier 2; there are default IPCC uncertainty value for different factors in the calculation steps
- > QA/QC comparison result using different approaches, CS and default EF, AD checks
- > **Reporting** all data and assumption used (differences depending on the tier)

 $CaO + H_2O \rightarrow Ca(OH)_2$ $CaCO_3$ (high-purity limestone) + heat $\rightarrow CaO$ (quicklime) + CO_2




Lime is used in:

- Metallurgy
- Pulp and paper
- Construction materials
- Effluent treatment
- Water softening
- pH control
- Soil stabilization
- Refining sugar cane or sugar beets (to remove impurities from the juice)

Lime Production

or Tier 2 method.

Notes on defaults in Equation 2.8

a: The default EF for dolomitic lime may be 0.86 or 0.77 depending on the technology used for lime production. See Table 2.4.

The calculation above is for developing countries

EF = 0.753 t CO2/t lime

Lime production: Tier 1

TABLE 2.4 BASIC PARAMETERS FOR THE CALCULATION OF EMISSION FACTORS FOR LIME PRODUCTION								
Lime Type	Stoichiom etric Ratio [tonn es CO2 p er tonn e CaO or CaO MgO]	Range of CaO Content [%]	Range of MgO Content ^d [%]	Default Value for CaO or CaO MgO Content [fraction]	Default Emission Factor [tonnes CO2 per tonne lime]			
	(1)			(2)	(1) • (2)			
High-calcium lime*	0.785	93-98	0.3-2.5	0.95	0.75			
Dolomitic lime ^b	0.913	55-57	38-41	0.95 or 0.85°	0.86 or 0.77 ^c			
Hydraulic lime ^b	0.785	65-92°	NA	0.75°	0.59			

Source:

* Miller (1999b) based on ASTM (1996) and Schwarzkopf (1995).

^b Miller (1999a) based on Boynton (1980).

⁶ This value depends on technology used for lime production. The higher value is suggested for developed countries, the lower for developing ones.

⁴ There is no exact chemical formula for each type of lime because the chemistry of the lime product is determined by the chemistry of the limestone or dolomite used to manufacture the lime.

* Total CaO content (including that in silicate phases).

Tier 1 default EF = $0.753 \text{ t CO}_2/\text{t}$ lime

Belize EF = $0.785 \text{ t } \text{CO}_2/\text{t lime}$

Lime Production: Tier 2

EQUATION 2.6 TIER 2: EMISSIONS BASED ON NATIONAL LIME PRODUCTION DATA BY TYPE

 $CO_2 Emissions = \sum_{i} (EF_{lime,i} \bullet M_{l,i} \bullet CF_{lkd,i} \bullet C_{h,i})$

Collect AD on high calcium, dolomitic and hydraulic lime. Correct for hydrated lime and LKD.

EF $_{\text{lime},i}$ = emission factor for lime of type *i*, tonnes CO₂/tonne lime

 $M_{i,i}$ = lime production of type *i*, tonnes

CF $_{lkd,i}$ = correction factor for lime kiln dust (LKD) for lime of type *i*, dimensionless (default 2%)

C _{h,i} = correction factor for hydrated lime of the type *i* of lime, dimensionless (defaults included in the software, e.g. 0.97)

i = each of the specific lime types listed in Table 2.4

EF per type of lime calculated using table 2.4 as in Tier 1

Cross-cutting issues

Completeness – particularly challenging for this category

- Lime is produced in some industries and never sold on the market and thus not in national statistics
- a) Iron and steel industry
- b) Synthetic soda ash
- c) Calcium carbide
- d) Magnesia and magnesium metal
- e) Copper smelters
- f) Sugar mills

All lime production should be reported in this source category, whether produced by lime kilns as a marketed product, or whether produced as a non-marketed intermediate reagent

 \checkmark Possibility of double counting with "other process uses of carbonates".

Default uncertainties for the category

Uncertainty	Comment	Tier
4-8%	Uncertainty in assuming an average CaO in lime	1, 2
2%	Emission factor high calcium lime	1, 2
2%	Emission factor dolomitic lime	1, 2
15%	Emission factor hydraulic lime	1, 2
5%	Correction for hydrated lime	1, 2
	Order of magnitude errors possible if non-marketed lime production is not estimated	1, 2, 3
1-2%	Uncertainty of plant-level lime production data. Plants generally do not determine output better than this. Assumes complete reporting.	2
See Table 2.3	Correction for LKD	2, 3
1-3%	Error in assuming 100% carbonate source from limestone (vs. other feeds).	3
1-3%	Uncertainty of plant-level weighing of raw materials	3

Data Sources

National statistics

- Cement/lime facilities- CaO content of clinker/ fraction of CaO from carbonate/CKD and LKD collection and recycling practices
- USGS Minerals Yearbook (cement, lime, soda ash production)
 <u>https://minerals.usgs.gov/minerals/pubs/commodity/myb/</u>
- Industrial Commodity Statistics Yearbook
- https://www.un-ilibrary.org/economic-and-social-development/industrialcommodity-statistics-yearbook-2015_e79d2dce-en-fr

UN Commodity Trade Statistics Database: Import/export statistics
 <u>https://comtrade.un.org/db/mr/daCommoditiesResults.aspx?px=H4&cc=25231</u>

2B: Chemical Industry

Code	Category		Default E	
		CO ₂	CH ₄	F- gases
2B8:	Petrochemical and Carbon Black Production			
2B8a:	Methanol	Х	Х	
2B8b:	Ethylene	Х	Х	
2B8c:	Ethylene Dichloride and Vinyl Chloride Monomer	X X	Х	
2B8d:	Ethylene Oxide	Х	Х	
2B8e:	Acrylonitrile	Х	Х	
2B8f:	Carbon Black	Х	Х	
2B9:	Fluorochemical Production			
2B9a:	By-product Emissions			Х
2B9b:	Fugitive Emissions			Х

Consultative Group of Experts (CGE)

Training Materials for National Greenhouse Gas Inventories

2D: Non-Energy Products from Fuels and Solvent Use

- GHG emissions from <u>use</u> of non-energy products (lubricants, waxes, greases, solvents) other than:
 - combustion for energy purposes;
 - use as feedstock or reducing agent;
 - incineration of waste oils/lubricants with/without energy recovery (Energy/Waste Sector).
- > A small proportion of non-energy products oxidises during use
- Focus on direct CO₂ emissions and substantial NMVOC/CO emissions which eventually oxidise to CO₂ in the atmosphere

Code	Category	CO2	NMVOC, CO
2D1:	Lubricant Use	Х	
2D2:	Paraffin Wax Use	Х	
2D3:	Solvent Use		Х
2D4:	Other (asphalt production and use)		Х

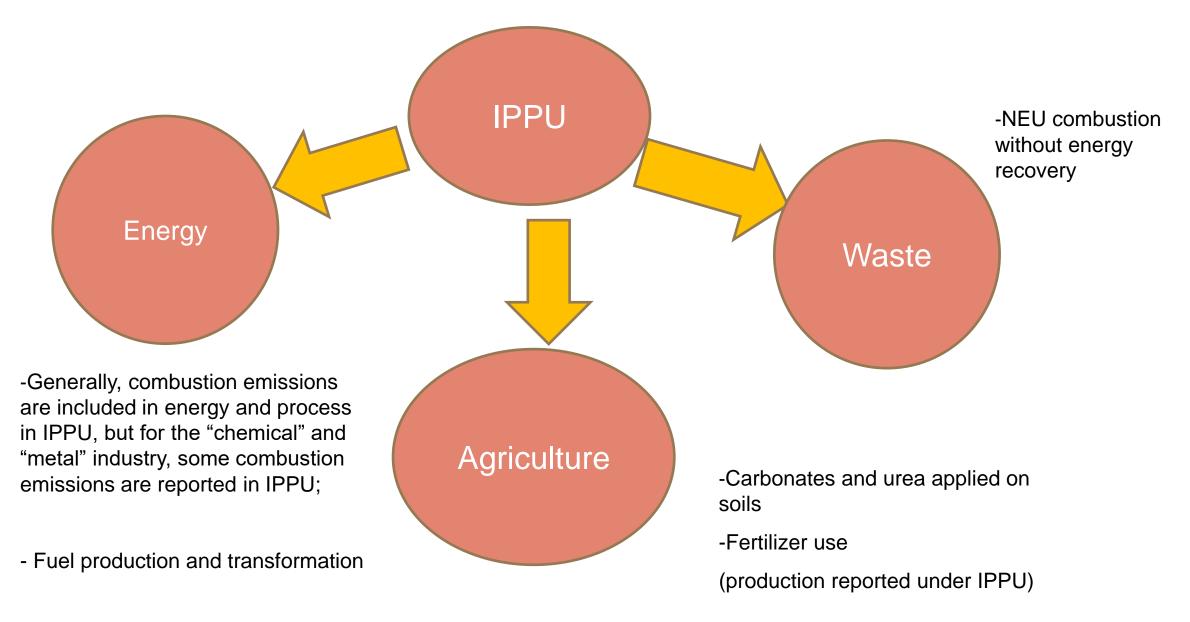
Non-energy use: common issues

• Potential for double counting/omissions:

a) This category includes only <u>first use.</u> Where lubricants are burned without energy recovery, emissions are reported in the waste sector; with energy recovery in the energy sector.

 Where lubricant is used for lubrication (e.g. in four-stroke engines), it is <u>IPPU.</u> When mixed with motor oil in two stroke engines, reported under road transport.

Estimation Tiers


Basic Tier 1 method (for non-key categories) is: •

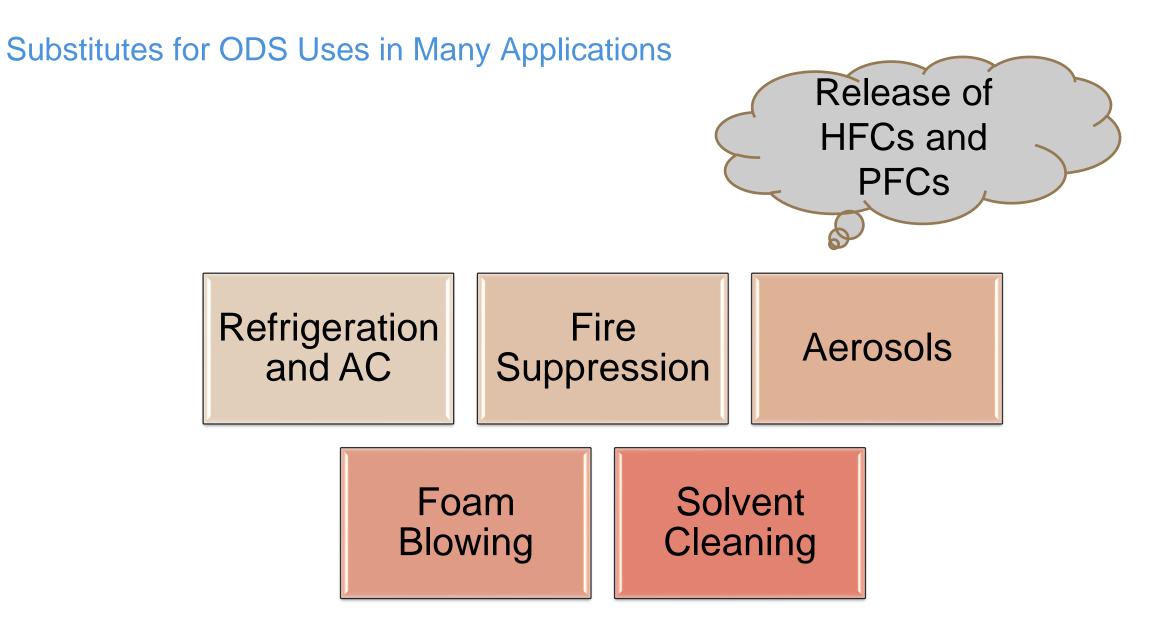
 CO_2 emissions = consumption * CC * Oxidized (ODU) * 44/12

Product	ODU factor
Lubricating oil	0.2
Grease	0.05
Default for all lubricants	0.2
Default for paraffin wax	0.2

- Default fractions: oil (90%) ad grease (10%)
 Default carbon content for lubricants and wax is 20 kg C/GJ
- Tier 2 disaggregated by type of lubricant with ideally country-specific EFs

IPPU and other sectors - What is not covered under IPPU

2F: Fluorinated Substitutes for ODS


Code	Category	HFCs	PFCs
2F1:	Refrigeration and Air Conditioning	Х	Х
2F1a:	Refrigeration and Stationary Air Conditioning	Х	Х
2F1b:	Mobile Air Conditioning	Х	Х
2F2:	Foam Blowing Agents	Х	Х
2F3:	Fire Protection	Х	Х
2F4:	Aerosols	Х	Х
2F5:	Solvents	Х	Х
2F6:	Other Applications	Х	Х

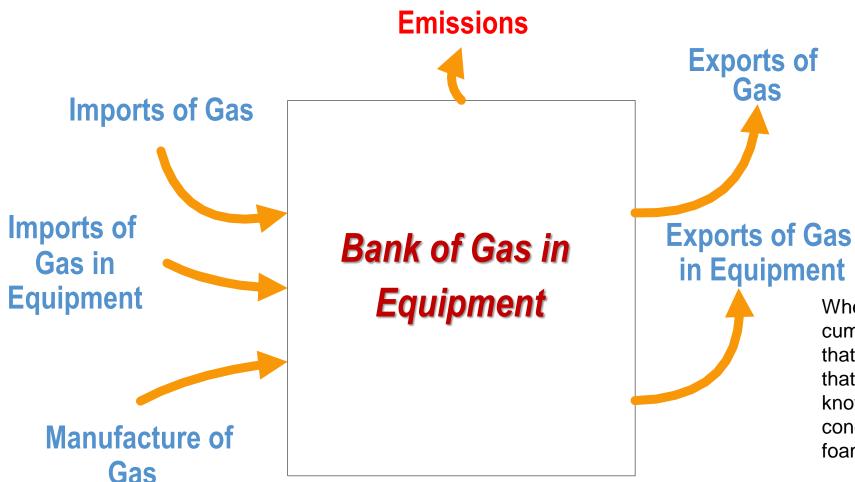
Consultative Group of Experts (CGE)

2F: Fluorinated Substitutes for ODS

- **Applications or Sub-applications** major groupings of current and expected usage of the ODS substitutes
- Actual emissions vs. Potential emissions (2006 vs.1996)
- Prompt emissions (within 2 years) and Delayed emissions
- **Bank** total amount of substances contained in existing equipment, chemical stockpiles, foams, other products not yet released to the atmosphere (+ExIm)
- Approaches:
 - \checkmark Emission Factor (a) and Mass-balance (b)
 - \checkmark Tier 1 and Tier 2

2F: Fluorinated Substitutes for ODS

Actual emissions vs. Potential emissions


- The 2006 IPCC Guidelines provide with methods for estimating <u>actual emissions</u> of ODS substitutes in contrast to <u>potential emissions</u> approach (1996 IPCC Guidelines) taking into account the time lag between consumption of ODS substitutes and emissions.
- <u>Potential emissions approach assumes that all emissions from an activity occur</u> in the current year (manufacture + import - export - destruction), ignoring the fact they will occur over many years, thus estimates may become very inaccurate

Example. A household refrigerator emits little or no refrigerant through leakage during its lifetime and most of its charge is not released until its disposal, many years after production. Even then, disposal may not entail significant emissions if the refrigerant and the blowing agent in the refrigerator are both captured for recycling or destruction

• Use of *actual emissions* allows to:

- ✓ accurately estimate emissions of ODS substitutes
- ✓ proper address emission reductions of abatement techniques

Bank

Where delays in emission occur, the cumulative difference between the chemical that has been consumed in an application and that which has already been released is known as a bank (refrigeration and air conditioning, fire protection, closed-cell foams).

Example. Blowing agent still present in foamed products which may have already been land-filled is still part of the bank, since it is chemical which has been consumed and still remains to be released.

Data Collection- Example: Refrigeration

Refrigeration: Assumptions

- Equipment servicing starts 3 years after equipment installation
- Emissions from bank = 15% annually across all sub-applications
- In a mature market, 67% sales for servicing, 33% for new equipment
- Average equipment lifetime is 15 years (average across all sub-applications)
- Complete transition to a new refrigerant takes 10 years.

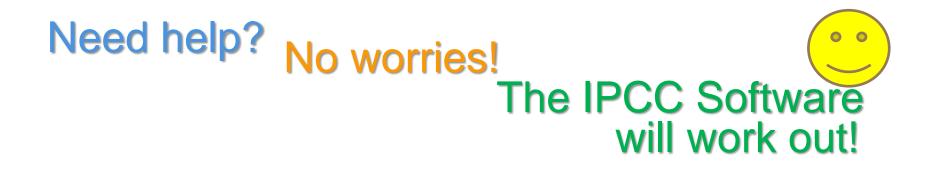
With these assumptions, what data do you need?

- Sale of specific refrigerant in the year to be reported
- Year of introduction of the refrigerant
- Growth rate in sale of new equipment (usually linear)
- Assumed percentage of new equipment exported and imported

Where to get it:

- *Regulation for phase-out of CFCs and HCFCs* : Countries may have "Refrigerant Management Plans" or "HCFC Phase-out Management Plan"
- Government Statistics
- Refrigerant Manufacturers and Distributors
- Disposal Companies
- Import/Export Companies
- Manufacturer Association
- Marketing Studies

2F: Sub-applications


	2F Product Uses as Substitutes fo	or Ozone Depleting Substances				
2F1	Refrigeration and Air Conditioning		- Open foams			
	Domestic (i.e., household) refrigeration		PU Flexible Foam			
	Commercial refrigeration including different types of equipment, from		PU Flexible Moulded Foam			
	vending machines to centralised refrigeration systems in supermarkets					
	Industrial processes including chillers, cold storage, and industrial heat		PU Integral Skin Foam			
	pumps used in the food, petrochemical and other industries					
	Transport refrigeration including equipment and systems used in		PU One Component Foam			
	refrigerated trucks, containers, reefers, and wagons					
	Mobile air-conditioning systems used in passenger cars, truck cabins,	2F3	Fire Protection			
	buses, and trains		Portable (streaming) equipment			
			Fixed (flooding) equipment			
2F2	Foam Blowing Agents	2F4	Aerosols			
	- Closed Foams		Metered Dose Inhalers (MDIs)			
	PU Continuous Panel		Personal Care Products (e.g., hair care, deodorant, shaving cream)			
	PU Discontinuous Panel		Household Products (e.g., air-fresheners, oven and fabric cleaners)			
	PU Appliance Foam		Industrial Products (e.g., special cleaning sprays such as those for operating electrical contact, lubricants, pipe-freezers)			
	PU Injected Foam]	Other General Products (e.g., silly string, tyre inflators, klaxons).			
	PU Continuous Block	2F5	Solvents			
	PU Discontinuous Block		Precision Cleaning			
	PU Continuous Laminate		Electronics Cleaning			
	PU Spray Foam]	Metal Cleaning			
	PU Pipe-in-Pipe		Deposition applications			
	Extruded Polystyrene	2F6	Other Applications			
	Phenolic Block					
	Phenolic Laminate	TOT	AL: 32 sub-applications 56			

2F: Chemicals and blends

Chemical	Refrigeration	Fire Suppression	Aeros	Aerosols		Foam	Other
	and Air	and Explosion	Propellants	Solvents	Cleaning	Blowing	Applications
	Conditioning	Protection					
HFC-23	Х	Х					
HFC-32	Х						
HFC-125	Х	Х					
HFC-134a	Х	Х	Х			Х	Х
HFC-143a	Х						
HFC-152a	Х		Х			Х	
HFC-227ea	Х	Х	Х			Х	Х
HFC-236fa	Х	Х					
HFC-245fa				Х		Х	
HFC-365mfc				Х	Х	Х	
HFC-43-10mee				Х	Х		
PFC-14 (CF4)		Х					
PFC-116 (C2F6)							Х
PFC-218 (C3F8)							
PFC-31-10 (C4F10)		Х					
PFC-51-14 (C6F14)					Х		
BLENDS							

2F: Tiers / Approaches and Data

	Approach A (emission-factor approach)	Approach B (mass-balance approach)
Tier 2	• Data on chemical sales and usage pattern	• Data on chemical sales by sub-
(emission estimation at	by sub-application	application
a disaggregated level)	 Emission factors by sub-application 	• Data on historic and current equipment
		sales adjusted for import/export by sub-
		application
Tier 1	• Data on chemical sales by application	• Data on chemical sales by application
(emission estimation at	 Emission factors by application 	• Data on historic and current equipment
an aggregated level)		sales adjusted for import/export by
		application

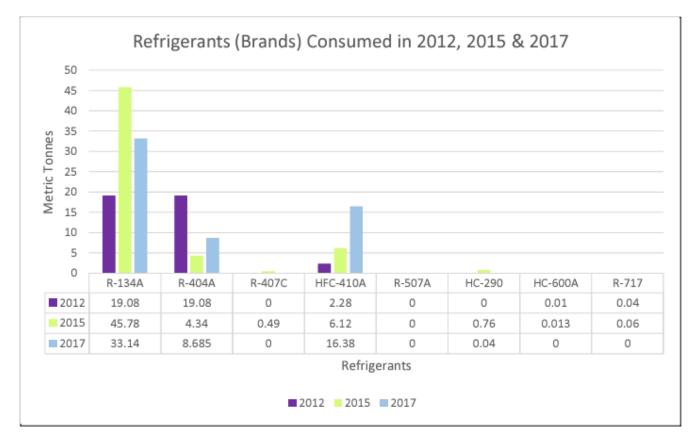
The IPCC Inventory Software enables you to estimate actual emissions even if you do not have historic data.

(!) But you need to have the data on:

- Year of introduction of chemical
- Domestic production of chemical in current year
- Imports of chemical in current year
- Exports of chemical in current year
- Growth rate of sales of equipment that uses the chemical

Regulations for ODS in Belize

- In June 2002, the Pollution Regulations were amended to include, among other things, issues related to the commitments made under the Montreal Protocol on Ozone Depleting Substances.
- This included the prohibition on the imports of equipment using ozone depleting substances and the establishment of a licensing system for the importation of these substances.
- In August 2009, the Pollution Regulations were amended basically to allow Belize to strengthen a requirement of the Montreal Protocol related to the <u>licensing system for the importation of refrigerants</u>
- This amendment also complements the Act in addressing the petroleum industry, including refining. The Refrigeration Technicians (Licensing) Act of 2010 provides for the registration and licensing of refrigeration and air conditioning technicians operating in Belize.



This Photo by Unknown Author is licensed under <u>CC</u> BY-SA

Use of Refrigerants in Belize

- Refrigerants are widely used in two situations, **mobile and stationary**.
- Mobile refrigerant use would be for air-conditioning in vehicles (maybe some boats), while stationary applications include residential, commercial, industrial and public buildings.
- Figure 2.19 shows all refrigerants consumed for the study period.

Exercise : ODS substitutes –Refrigerants (2F1) (using IPCC software)

From the National Ozone Unit, you have information on the mobile airconditioning uses of HFC-134a in 2015 (45.78t). There is no production of airconditioning equipment in the country and no information on the previous imports. Only the year of start of import of equipment using HFC-134a is known 2008.

- 1. In your data base, create a new inventory year for 2015
- Calculate the emissions in 2015 using the IPCC software if the life-time of the equipment is estimated to 15, the growth rate in <u>new equipment sales is</u> <u>assumed 4%</u> and the <u>EF is assumed of 10%</u>.
- 3. Calculate the emissions in $\underline{CO_2}$ eq.

IPCC Software: Refrigeration and AC

···· 2.E.4 - Heat Transfer Fluid	Worksheet											
2.E.5 - Other (please specify)	Sector:	Industrial Pr	rocesses and Product	Jse								2005
2.F - Product Uses as Substitutes for Oz	Category:	Refrigeratio	n and Air Conditioning									
1 - Refrigeration and Air Conditio	Subcategory	: 2.F.1.a - Re	efrigeration and Station	ary Air Conditio	ning							
2.F.1.a - Refrigeration and Statio	Sheet:	CF3CH3 Er	nissions									
2.F.1.b - Mobile Air Conditioning	Date HFC-		F-Gases Data									
···· 2.F.2 - Foam Blowing Agents	GHFC-	143a (CF3CH3)	r-Gases Data	-			.) 3	Lifetime (years	s) 15 EF	(%) 15 De	stroyed (%) 0
···· 2.F.3 - Fire Protection		Δ		4 F-	Gases Data			G	н	1		-
···· 2.F.4 - Aerosols		^		<u> </u>				<u> </u>		· · · · · · · · · · · · · · · · · · ·	4	<u>^</u>
···· 2.F.5 - Solvents							in of	Release of agent				
2.F.6 - Other Applications (please sp	Year	Production	Country/Territory	South A	trica		tired	from retired	Bank	Emissions		
2.G - Other Product Manufacture and Us		(tonnes)	Category	2.E.1.a.	- Refrigeration and Statio	nary Air Conditioning	ent	equipment (tonnes)	(tonnes)	(tonnes)		
2.G.1 - Electrical Equipment							»,	(torines)				
			Gas	HFC-14	3a (CF3CH3)	~	overy	G = E - F		I = H * EF + G		
	1991	0	Data				0	0	0		0 📝	
2.G.1.c - Disposal of Electrical E	1992	0	Year of Introduction	n 19	998 ≑		0	0	0		0 📝	
2.G.2 - SF6 and PFCs from Other Pr	1993	0					0	0	0		0 📝	
	1994	0		-			0	0	0		0 📝	
	1995	0	Growth Rate in	New Equipmen	it Sales	_3.00% 🜩	0	0	0		0 📝	
2.G.2.c - Other (please specify)	1996	0	Assumed Equipr	nent Lifetime (y	(ears)	_15 🗢	0		0		0 📝	
□ 2.G.3 - N2O from Product Uses	1997	0			·		0		0		0 7	
2.G.3.a - Medical Applications	1998	81.31	Emission Factor	from installed b	ase	15.00% 🜩	0	-	101.64			
2.G.3.b - Propellant for pressure	1999	167.5	% of Gas Destro	yed at End of l	Life	0.00% 🜩	0	0	295.774	44.366		
	2000	258.78					0	0	574.8879			
006 IPCC Guidelines - 🦷	2000	355.39					0	0	932.89472		L	
	2001	457.57			Save	Close	0		1364.92051	204.7380		
		457.57			Save	Close	0	-				
	2003			100.0	040.51	0		0	1867.13243			
	2004	679.61	0	169.9	849.51	0	0	-	2436.57257	365.4858		
	> 2005	800 🧹	0	200	933.24	0	0	-	3071.08668		3 📝 🔒	
	2006	746 62		186 62 while cells wit	933 241 h white background con	W1		0	3543 66368	531 5495		1 1*
	Cells with red	background con	tain interpolated values	while cells with	in white background con	tain user-denned values						
							3	F-Gases Data	Uncert	ainties	Import from	i Excel

- 1. Select the category
- 2. Select the refrigerant –Select F-gases data to enter specific information for each refrigerant
- 3. Enter relevant minimal information

Enter the relevant data into the IPCC Software

Sub	division		ear Introduce	ed Gas HFC-134-		y Growth Rate		ime o (year)		F		
Intro Year 2008 Growth Rate (%) 4 Lifetime (d) (years) 15 EF (%) 10 Destroyed (%) 0												
						Equation	7.2					
	Year	Production (tonnes)	Exports (tonnes)	Imports (tonnes)	Total new agent to domestic market (tonnes)	Agent in retired equipment (tonnes)	Destructio agent in re equipme (tonnes	etired ent	Release of agent from retired equipment (tonnes)	Bank (tonnes)	Emissions (tonnes)	
1	ΔV	А	В	С	D = A - B + C	E	F = E ^ (Recovery/ 00)	1 🜮	G = E - F	H = H(t-1) - I(t-1) + D - E	I = H * (EF/100) + G	
	2008	0	0	3.26	3.26	0		0	0	2.20	0.276	
	2009	0	0	6.79	6.79	0		0	0		is in tonnes	4 📝
	2010	0	0	10.59	10.59	0		0	0	of HF	⁻ C-134a	5 🗹
	2011	0	0	14.68	14.68	0		0	0	32.08/44	208/4	
	2012	0	0	19.08	19.08	0		0	0	47.9587	9587	
	2013	0	0	27.98	27.98	0		0	0	71.14283	7. 428	
	2014	0	0	36.88	36.88	0		0	0	100.90854	10.05085	
	2015	0	0	45.78		Insert	Activity	0	0	136.59769	13.65977	
	2016	0	0	39.46	39.46		1 Tonnes	0	0	162.39792	16.23979	
	2017	0	0	33.14	33.14	Batan		0	0	179.29813	17.92981	1

Answer

🖳 Application Database Inventory Year Administrate V	Worksheets Tools	Export/Import	Reports	Window	Help		
Table 2 IPPU Sectoral Table				nmary			
		(Gg)		rt Summary		CO2 Equiv	alents(Gg)
			Ene	rgy	•		
Catagories	coz	CH4	IPPL	J	•	Sectoral	
Categories			AFO	LU	•	Backgro	nd
			Was	te	•		
2.E.2 - TFT Flat Panel Display (9)				7		0.000	0.000
2.E.3 - Photovoltaics (9)			labi	e 7a - Uncerta	inties	0.000	0.000
2.E.4 - Heat Transfer Fluid (10)					0.000		
2.E.5 - Other (please specify) (3)						Comonata	
2.F - Product Uses as Substitutes for Ozone Depleting Substar	nces			17.758	0.000	Generate a	
2.F.1 - Refrigeration and Air Conditioning				17.758	0.000	Report	
2.F.1.a - Refrigeration and Stationary Air Conditioning				17.758	0.000	emission	in COzeq
2.F.1.b - Mobile Air Conditioning				0.000	000		

ANSWER

17.758 Gg CO2 eq

The Same solution using GWP

Substance	AR1 (1990)	AR2 (1995)	AR3 (2001)	AR4 (2007)	AR5 (2013)
Carbon dioxide, fossil (CO ₂)	1	1	1	1	1
Methane, fossil (CH ₄)	21	21	23	25	28
Methane, biogenic (CH ₄)	18.25	18.25	20.25	22.25	25.25
Dinitrogen monoxide (N₂O)	290	310	296	298	265
HCFC-141b	440	-	700	725	782
HFC-134a	1200	1300	1300	1430	1300
HCFC-22	1500	-	1700	1810	1760
HCFC-142b	1600	-	2400	2310	1980
CFC-11	3500	-	4600	4750	4660
CFC-12	7300		10600	10900	10200
Sulfur hexafluoride	-	23900	22200	22800	23500

- Emissions (t) = T of Refrig * Bank (tonnes) *EF
- Convert Tonnes to Gg (1 Gg = 1000 tonnes)
- =13.659 tonnes of HFC

=13.659 /1000

- = 0.013659 Gg of HFC
- = 0.013659 Gg of HFC * GWP

= 0.013659 Gg of HFC * 1300

= 17. 758 Gg CO2eq

Questions?