

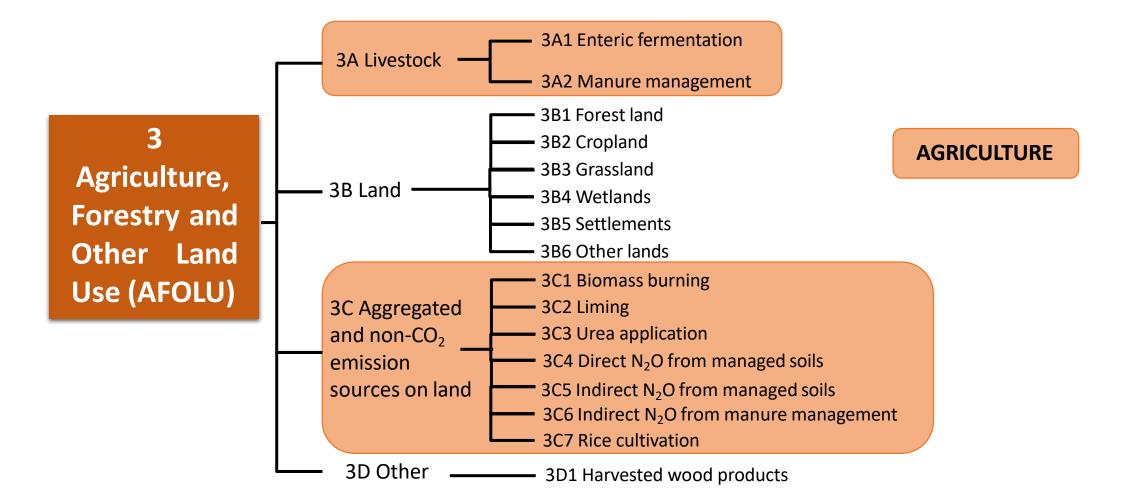
GHG Emissions: Agriculture sector

Livestock & Soils

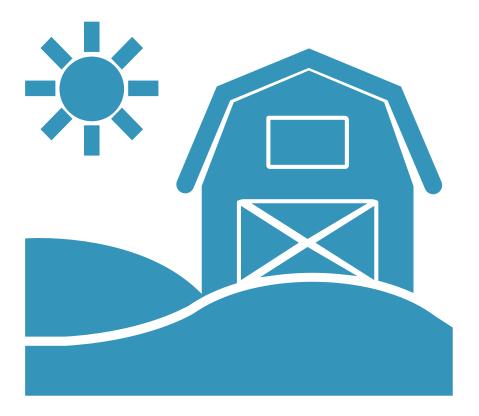
16 – 19 April 2024 Belize

supported by **UNOPS**

Brittany Meighan Rancharan Regional Network Coordinator – Anglophone Caribbean CBIT-GSP



Outline

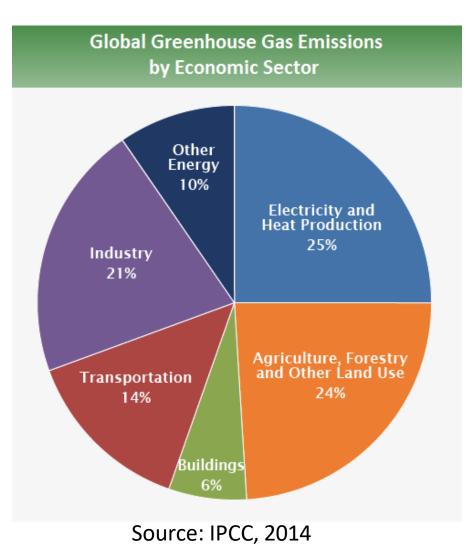

- Identify major processes leading to emissions in Agriculture sector
- Understand the methodological approaches for calculating GHG emissions and their data requirements
- Apply at least a Tier 1 methodology to calculate emissions from the Agriculture sector

AFOLU Sector Structure

• AFOLU = Agriculture, Forestry and Other Land Use

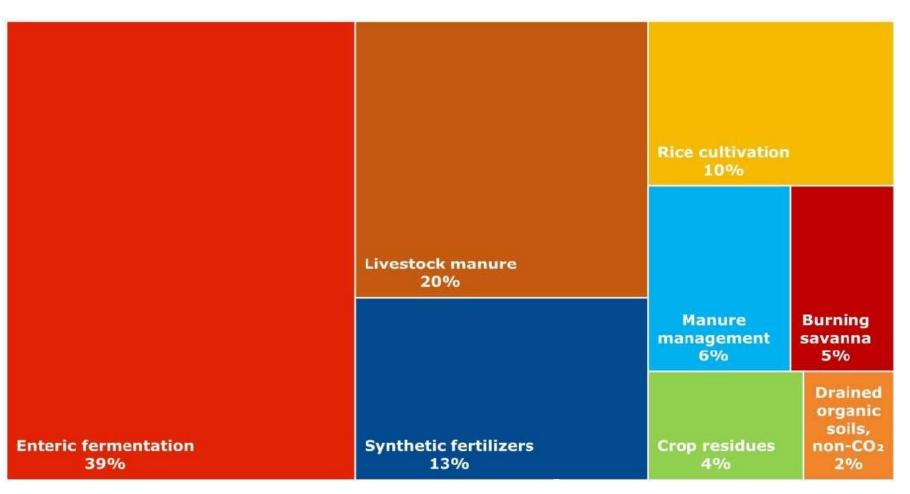
Agriculture Sector: Emission Sources

- CH₄ emissions from enteric fermentation from all livestock categories (except poultry)
- Emissions of CH₄ and N₂O (direct and indirect) from manure management practices of all livestock manure (including poultry)
- Emissions (CO₂, CH₄, N₂O, CO, NO_x) from biomass burning which includes crop residue burning
- Emissions of CO₂ from lime and urea application to fields
- Direct and indirect emissions of N₂O from application of nitrogen (organic and inorganic) to managed soils
- CH₄ emissions from rice production


AFOLU emissions

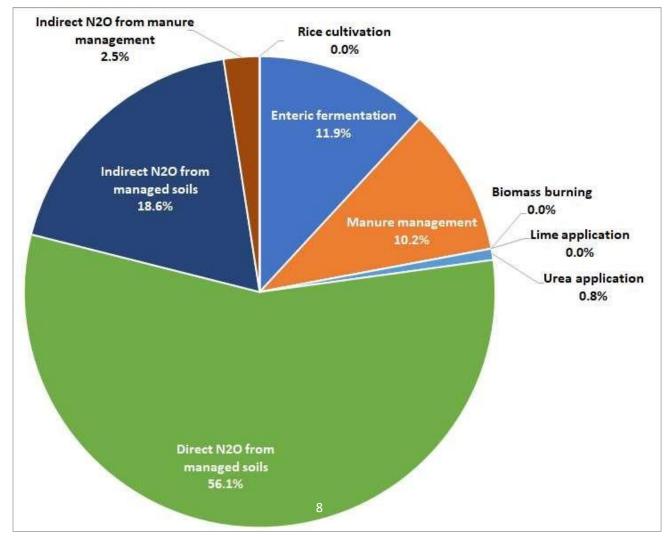
- Agriculture
 - Livestock (CH₄)
 - Manure (CH₄; N₂O)
 - Agricultural soils (N₂O; CO₂)
 - Synthetic fertilisers
 - Crop residues
 - Lime/urea application
 - Crop burning (CH₄; N₂O; CO₂)
 - Rice cultivation (CH₄)
- Forestry and other LU emissions (CO₂)
 - Forest lands (including deforestation)
 - Croplands
 - Grasslands
 - Wetlands
 - Settlements

Crop 127	ock & Gre (5.8%)
Solution Sol	у&
18.4%	


Introduction

- Human activities Land use change and management have a significant influence on the greenhouse gas concentrations in the atmosphere.
- Processes accounting for GHG emissions and removals include photosynthesis, respiration, decomposition, nitrification/de-nitrification, enteric fermentation, and combustion that are driven by the biological activity and physical processes.
- **AFOLU represents 20-24%** of net anthropogenic emissions, largest emission sector after energy.
- Mainly from deforestation, agricultural emissions from soil and nutrient management and livestock.

Global agriculture emissions


 Contribution of crops and livestock activities to total global non-CO₂ emissions from agriculture in 2018 (5.3 Gt CO₂eq)

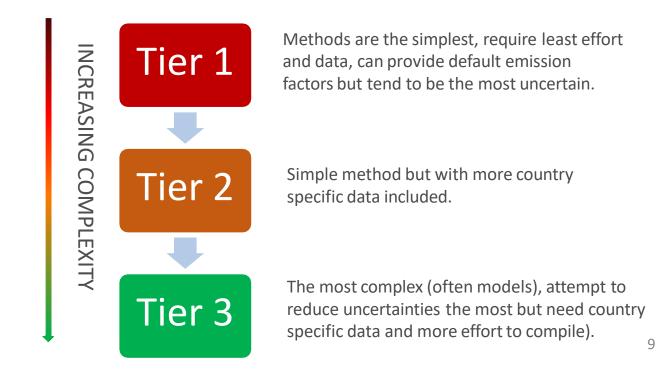
Agriculture emissions in the Caribbean

- Agriculture emissions across the 9 Caribbean countries:
 - Bahamas, Belize, Dominica, Haiti, Saint Lucia, St Kitts and Nevis, St Vincent and The Grenadines, Suriname, Trinidad and Tobago
 - Approximately 9.5% of economy wide emissions

Agricultural soils are important already being actively managed, and so amenable to implementation of improved practices

Exclusions from agriculture

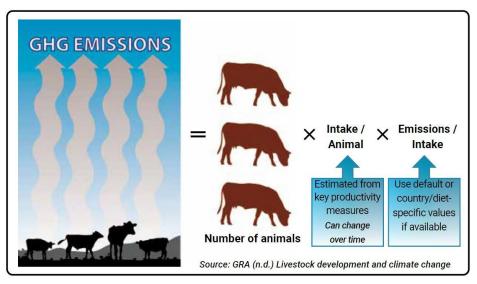
- Agriculture in the inventory includes production emissions, i.e., on farm emissions, and does not extend to activities beyond the farm gate
- Agriculture emissions do not include emissions from off-road vehicles used for agriculture production
 - These are dealt with under Transport in the Energy Sector
- CO₂ emissions from biomass burning can either be included under Biomass burning in Agriculture (3C) or as disturbance losses under Land (3B)
 - All other non-CO₂ gases from biomass burning fall under 3C


Basic methods and concepts

Basic concepts: Methodology for estimating emissions

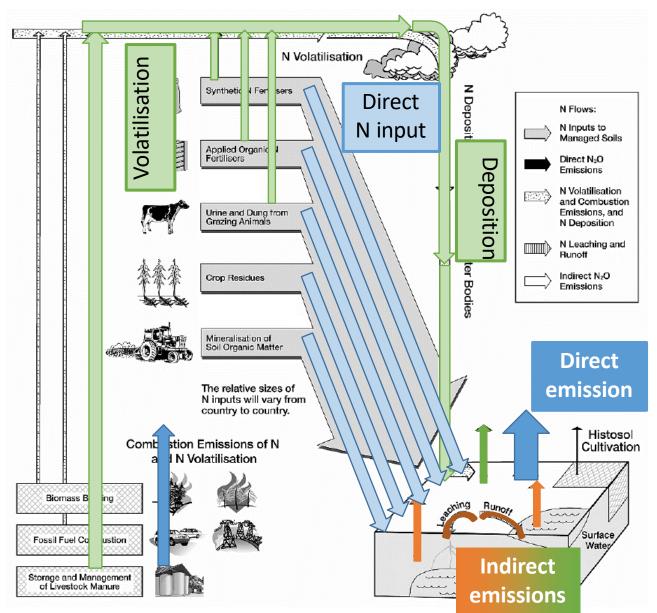
• For all gases the basic methodology is:




 Increasing the tier level increases the data requirements and complexity of the equation

Basic concepts: Importance of higher Tier level methods

- Tier 1 uses default emission factors which:
 - Provide a good first estimate
 - May be over or underestimates
 - Large uncertainties
 - Don't allow for any annual changes
 - Tier 2 uses more detailed country specific data which:
 - Provide more accurate estimates for a country
 - Allow for emission factor variation
 - makes it easier to track policy impacts and emission reductions


Basic concepts: Livestock population characterisation

•

sic livestock characterisation	 Enhanced livestock characterisation (Tier 2): 		
1):	Main category	Subcategories	
Cattle • Dairy	Mature dairy cow or Mature dairy Buffalo	 High-producing cows that are principally used for milk production Low-producing cows that are principally used for milk production 	
• Other Buffalo Sheep Goats	Other mature cattle or Mature non-dairy buffalo	 Females Cows used to produce offspring for meat Cows used for more than one production purpose: milk, meat, draft Males Bulls used principally for breeding purposes Bullocks used principally for draft power 	
Camels Horses	Growing cattle or Growing buffalo	 Calves pre-weaning Replacement dairy heifers Growing/fattening cattle or buffalo post-weaning Feedlot-fed cattle on diets containing >90% concentrates 	
Mules & asses	Mature ewes	 Breeding ewes for production of offspring and wool production Milking ewes where commercial milk production is the primary purpose 	
Swine	Other mature sheep (>1yr)		
MarketBreeding	Growing lambs	 Intact males Castrates Females IPCC 2006, Vol 4, Chapter 10, Table 10.1 	
Poultry Chickens: Layers 	Mature swine	 Sows in gestation Sows which I Boars that ar A finding from the 2018 voluntary peer 	
• Broilers Turkeys/ducks	Growing swine	 Nursery Finishing Gilts that wil Growing boars that will be used for breeding purposes 	
er	Chickens	 Broiler chickens grown for producing meat Layer chickens for producing eggs, where manure is managed in dry systems Layer chickens for producing eggs, where manure is managed in wet systems Chickens under free-range conditions for egg or meat production 	

Basic concepts: Direct and indirect N₂O emissions

- Occurs for both manure management and managed soils
- Direct emissions:
 - Directly from the soil to which the N is added/released
- Indirect emissions
 - N is transported from agricultural systems (i.e., not where N was applied):
 - Via water through ground water (leaching) and surface waters (runoff) and
 - Via air where NH₃ and NO_x are volatilised and subsequently redeposited
 - These result in further N₂O emissions at these deposition sites

Basic concepts: Global warming potentials

- Dealing with non-CO₂ gases so GWP are important
- This converts the non-CO₂ emission to a CO₂ equivalent so that values can be compared across categories and sectors

	Chemical formula	GWP values for 100-year time horizon		
Industrial designation or common name		Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessmen Report (AR5)
Carbon dioxide	CO ₂	1	1	1
Methane	CH4	21	25	28
Nitrous oxide	N ₂ O	310	298	265
Substances controll	ed by the Montreal F	Protocol		
CFC-11	CCI ₃ F	3,800	4,750	4,660
CFC-12	CCI ₂ F ₂	8,100	10,900	10,200
CFC-13	CCIF ₃		14,400	13,900
CFC-113	CCI ₂ FCCIF ₂	4,800	6,130	5,820
CFC-114	CCIF ₂ CCIF ₂		10,000	8,590
CFC-115	CCIF ₂ CF ₃		7,370	7,670
Halon-1301	CBrF ₃	5,400	7,140	6,290
Halon-1211	CBrCIF ₂		1,890	1,750
Halon-2402	$CBrF_2CBrF_2$		1,640	1,470
Carbon tetrachloride	CCI4	1,400	1,400	1,730
Methyl bromide	CH ₃ Br		5	2
Methyl chloroform	CH ₃ CCI ₃	100	146	160

- Which of the following activities are covered under the AFOLU sector?
- Select one or more:
 - A. Emissions from storing and composting manure
 - B. Emissions from land conversions
 - C. Fuel consumption in agricultural equipment
 - D. Emissions from burning manure for fuel
 - E. Crop residue burning for harvesting and clearing
 - F. Agroprocessing emissions

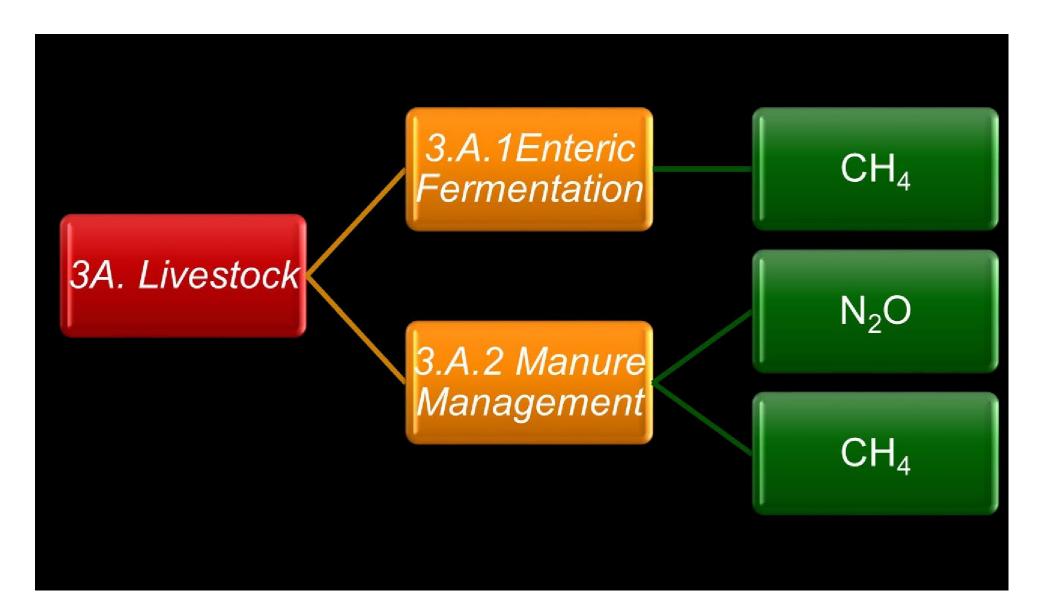
ANSWER

- Which of the following activities are covered under the AFOLU sector?
- Select one or more:
 - A. Emissions from storing and composting manure
 - B. Emissions from land conversions
 - C. Fuel consumption in agricultural equipment
 - D. Emissions from burning manure for fuel
 - E. Crop residue burning for harvesting and clearing
 - F. Agroprocessing emissions

- Which of the following emissions are covered under the Agriculture sector?
- Select one or more:
 - A. CH₄ from enteric fermentation
 - B. CO₂ emissions due to decomposition
 - C. CO₂ emissions from tractors
 - D. N_2O emissions from urine and dung
 - E. CH₄ emissions from rice cultivation
 - F. CO₂ emissions from harvesting crops
 - G. N_2O emissions from urea application

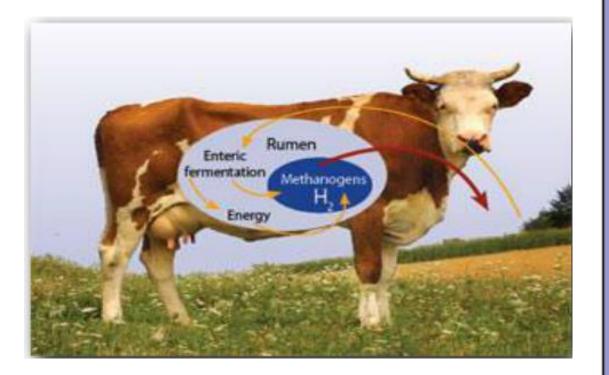
- Which of the following emissions are covered under the Agriculture sector?
- Select one or more:
 - A. CH₄ from enteric fermentation
 - B. CO₂ emissions due to decomposition
 - C. CO₂ emissions from tractors
 - D. N₂O emissions from urine and dung
 - E. CH₄ emissions from rice cultivation
 - F. CO₂ emissions from harvesting crops
 - G. N_2O emissions from urea application

- What do you multiply your CH₄ emission estimates by to convert it to CO₂ equivalents?
 - A. Molecular mass of CO₂
 - B. Molecular mass of CH₄
 - C. Global warming potential



- What do you multiply your CH₄ emission estimates by to convert it to CO₂ equivalents?
 - A. Molecular mass of CO₂
 - B. Molecular mass of CH₄

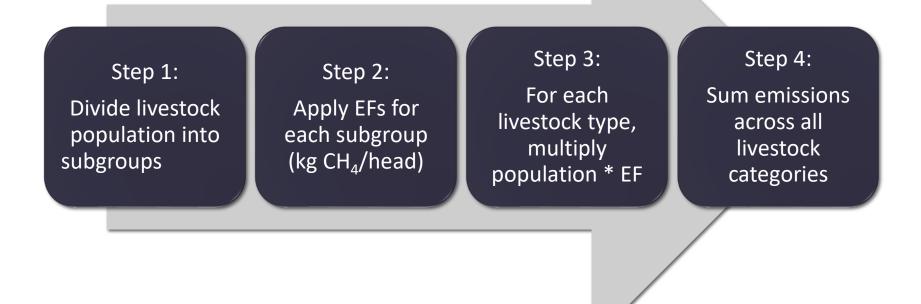
C. Global warming potential


Emissions from Livestock

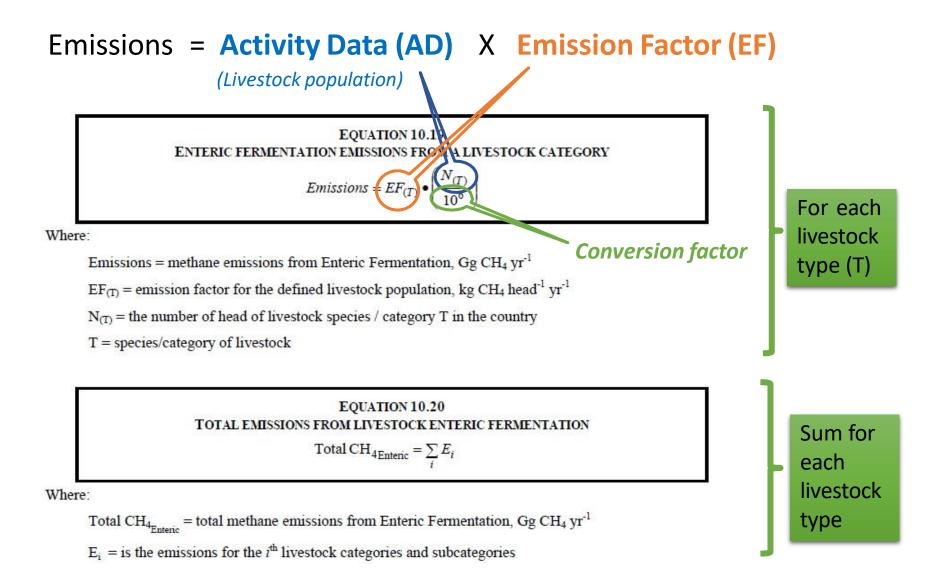
Enteric fermentation

Enteric fermentation: Introduction

The amount of CH₄ emitted from enteric fermentation also depends on:


- Animal age: Older animals tend to emit less CH4
- Animal weight: Heavier animals tend to emit more CH4
- Quality of feed consumed: Lower quality feed consumed tends to result in greater CH4 emissions
- Quantity of feed consumed: Higher quantities of feed consumed tend to result in greater emissions

Enteric Fermentation Introduction


Ruminants	Non-ruminants
Examples of ruminants Cattle Buffalo Goats Sheep Deer Camels 	Examples of non-ruminant livestock • Horses • Mules • Asses • Swine
More methane	Less methane

Enteric: General Approach

General approach applies to all methodological tiers and can be performed at varying levels of detail and complexity

Estimating enteric fermentation emissions

Enteric fermentation: Activity data

- **Population data** is the activity data
- Basic (Tier 1) or enhanced (Tier 2) livestock categories
- Poultry not included enteric fermentation emissions are insignificant
- Note that the emission factor unit is kg CH₄ per head <u>per year</u>
 - Assumes population is alive for 365 days
- This is not true for short lived (<1 year) livestock, such as poultry
 - In this case we need to calculate the annual average population

Annual average population =

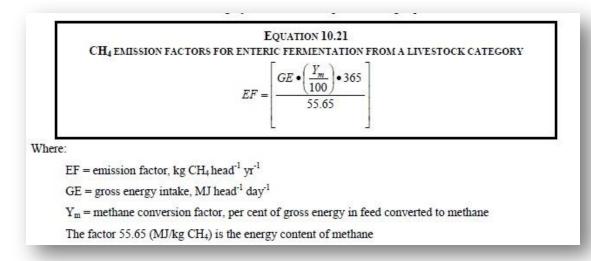
(Number of livestock produced in a year/365) * number of days alive

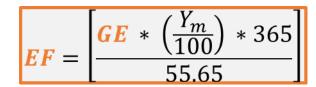
- For example:
 - If we have 365 chickens produced in a year
 - Divide by 365 days in a year which gives us 1 chicken per day per year
 - However, each chicken lives for say 45 day
 - This means that we multiply the 1 chicken per day by 45 to get the number of chickens alive on any one day in that year
 - Now this can be multiplied by the emission factor

Example for broiler chickens:

For broiler chickens if 1 500 000 chickens are produced in a year this does not mean on every day there are 1 500 000 chickens

If the chickens live for 45 days then the average number of chickens alive on any 1 day in a year = (1 500 000/365) * 45 = 184 932 chickens


 $Emissions = EF_{(T)} * \left[\frac{N_{(T)}}{10^6}\right]$


Enteric Fermentation: Emission factors

 Tier 1 - requires <u>default</u> EFs (EF_(T)) for the livestock subcategories according to the basic characterization

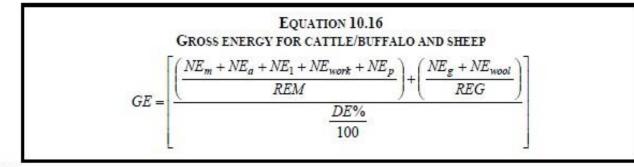
- IPCC 2006 guidelines
- Tier 2 requires <u>country-specific</u> EFs (EF_(T)) estimated for each animal category based on the gross energy intake estimated using the detailed data on:
 - Average daily feed intake (MJ per day or kg per day of dry matter)
 - Methane conversion factor (% of feed energy converted to CH₄)

Enteric fermentation: Gross energy intake (Tier 2)

Animal performance and diet data are used to estimate feed intake, wi EF = 55.65 amount of Gross Energy (MJ/day) an animal needs for maintenance and for activities such as growth, lactation, and pregnancy

 $Emissions = EF_{(T)} *$

GE *


* 365

 The feed intake in kg day⁻¹ should be calculated by converting from GE in energy units to dry matter intake (DMI), by dividing GE by the energy density of the feed

> DMI (kg DM/day) = GE (MJ/day)/Energy density of feed (MJ/kg DM) DMI = GE/18.45

Quality check: DMI should be about 2% to 3% of body weight of mature or growing animals. In high producing milk cows, it can be as much as 4%

Enteric fermentation: Gross energy intake calculation

Where:

GE = gross energy, MJ day⁻¹

 NE_m = net energy required by the animal for maintenance (Equation 10.3), MJ day⁻¹

 NE_a = net energy for animal activity (Equations 10.4 and 10.5), MJ day⁻¹

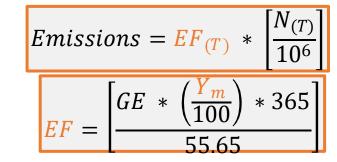
NE1 = net energy for lactation (Equations 10.8, 10.9, and 10.10), MJ day¹

NEwork = net energy for work (Equation 10.11), MJ day⁻¹

NEp = net energy required for pregnancy (Equation 10.13), MJ day⁻¹

REM = ratio of net energy available in a diet for maintenance to digestible energy consumed (Equation 10.14)

 NE_g = net energy needed for growth (Equations 10.6 and 10.7), MJ day⁻¹

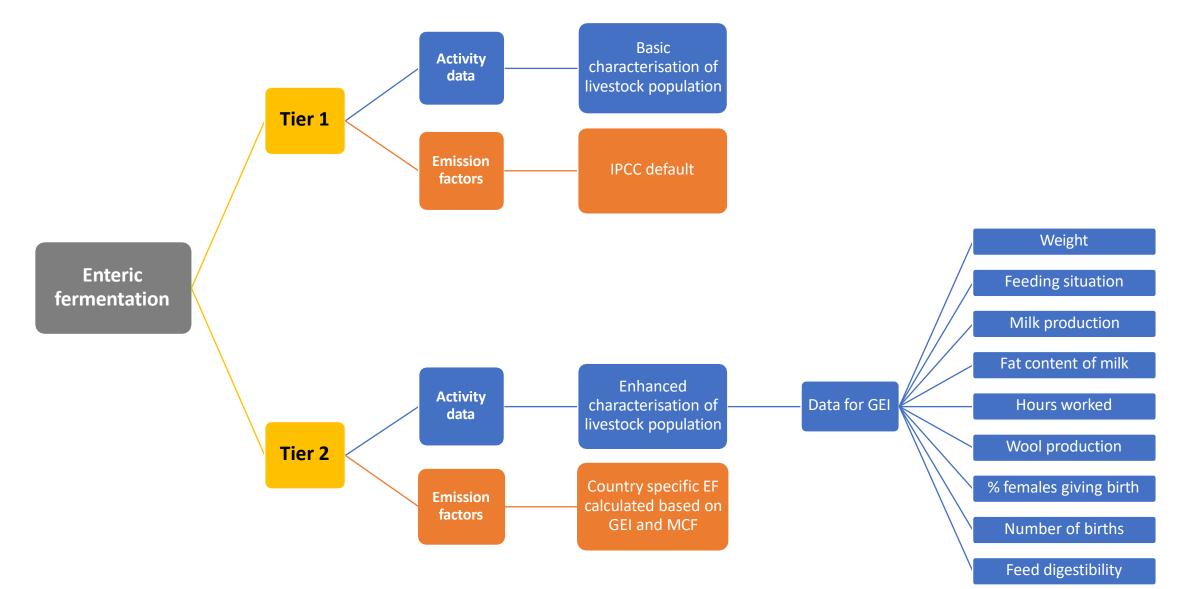

 NE_{wool} = net energy required to produce a year of wool (Equation 10.12), MJ day⁻¹

REG = ratio of net energy available for growth in a diet to digestible energy consumed (Equation 10.15)

DE%= digestible energy expressed as a percentage of gross energy

Enteric fermentation: CH₄ conversion factor

TABLE 10.12 CATTLE/BUFFALO CH ₄ CONVERSION FACTORS (Y_M)			
Livestock category	Y _m ^b		
Feedlot fed Cattle ^a	3.0% <u>+</u> 1.0%		
Dairy Cows (Cattle and Buffalo) and their young	6.5% <u>+</u> 1.0%		
Other Cattle and Buffaloes that are primarily fed low quality crop residues and by- products	6.5% <u>+</u> 1.0%		
Other Cattle or Buffalo - grazing	6.5% <u>+</u> 1.0%		
 * When fed diets contain 90 percent or more concentrates. * The ± unline represent the range 	•		



^b The ± values represent the range.

Source: IPCC Expert Group.

- 1. Y_m = extent to which feed energy is converted to CH_4
- 2. High digestibility/ high energy feed = use lower bounds; poorer feed use higher bounds
- 3. Y_m = 0 for all animals consuming only milk (e.g., lambs and calves)

Enteric fermentation method summary

Questions?

Exercise 1 – Calculate CH₄ emissions

$$Emissions = EF_{(T)} \bullet \left(\frac{N_{(T)}}{10^6}\right)$$

IPCC Equation – 10.19

How much GgCH₄ will be emitted by 1345 dairy cows in a year?

Given $EF = 68 \text{ kgCH}_4/\text{head}/\text{year}$

Exercise 1 – CH₄ emissions - Answer

$$Emissions = EF_{(T)} \bullet \left(\frac{N_{(T)}}{10^6}\right)$$

Emissions from Dairy Cows = $0.09146 \text{ GgCH}_4/\text{year}$

Exercise 2 - Estimate CO₂ equivalent of CH₄ Emissions

$$Emissions = EF_{(T)} \bullet \left(\frac{N_{(T)}}{10^6}\right)$$
 Equation – 10.19

• How much CO₂ eq will be emitted by have 6,295 buffalos in a year?

□ $N_{(T)} = 6,295$ □ $EF_{(T)} = 55 \text{kg CH}_4/\text{head/yr}$ □ GWP of Methane = 28

• Report your emissions in Gg CO₂ eq.

Exercise 2 – Estimate CO₂ equivalent of CH₄ Emissions Answer

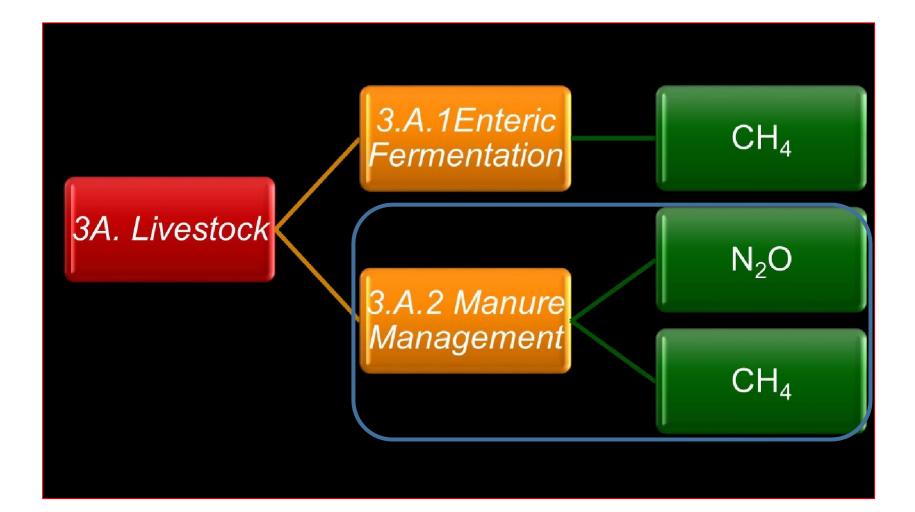
$$Emissions = EF_{(T)} \bullet \left(\frac{N_{(T)}}{10^6}\right)$$

Emissions = 55 * 6295/1000000= 346225/1000000= $0.346225 \text{ GgCH}_4/\text{yr}$

Emissions = $0.346 * 28 = 9.69 \text{ GgCO}_2 \text{ eq}$.

 CO_2 eq. Emissions from Buffalos = 9.69 Gg CO_2 /year

Dairy cattle manure management lagoon in Louisiana, USA



Manure pile in Austria

Manure Management

Emissions from Livestock

How do manure management systems produce GHGs?

- Manure management refers to the capture, storage, treatment, and utilization of manure
- CH₄ and N₂O are produced directly from Manure Management systems (MMS) due to manure decomposition
- N can also leach or be volatized from MMS leading to indirect N_2O emissions
- Key MMS emission determinants:
 - Aerobic vs anaerobic
 - Liquid vs solid
 - Temperature and storage time

Manure Management Systems (MMS)


- Spread daily on croplands or pastures
- Stored as a solid in stacks
- Stored on a dry lot
- Managed as a liquid or slurry in tanks or ponds
- Managed in an uncovered anaerobic lagoon

- Stored in pits below animal confinements
- Managed in an anaerobic digester
- Burned for fuel
- Composter
- Managed with or without litter (for poultry)
- Aerobically treated

Manure Management: CH₄ emissions

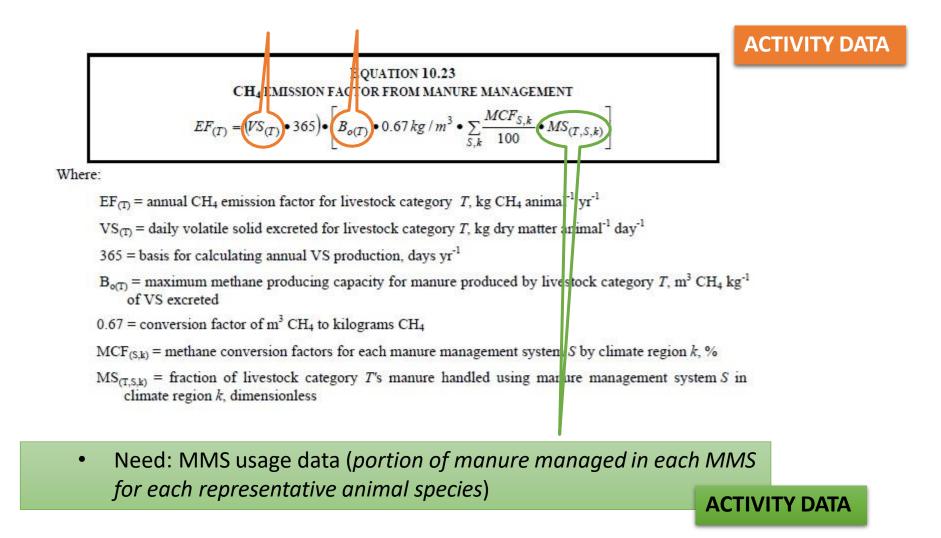
CH_{4Manure} = CH₄ emissions from manure management, for a defined population, Gg CH₄ yr⁻¹

 $EF_{(T)}$ = emission factor for the defined livestock population, kg CH₄ head⁻¹ yr⁻¹

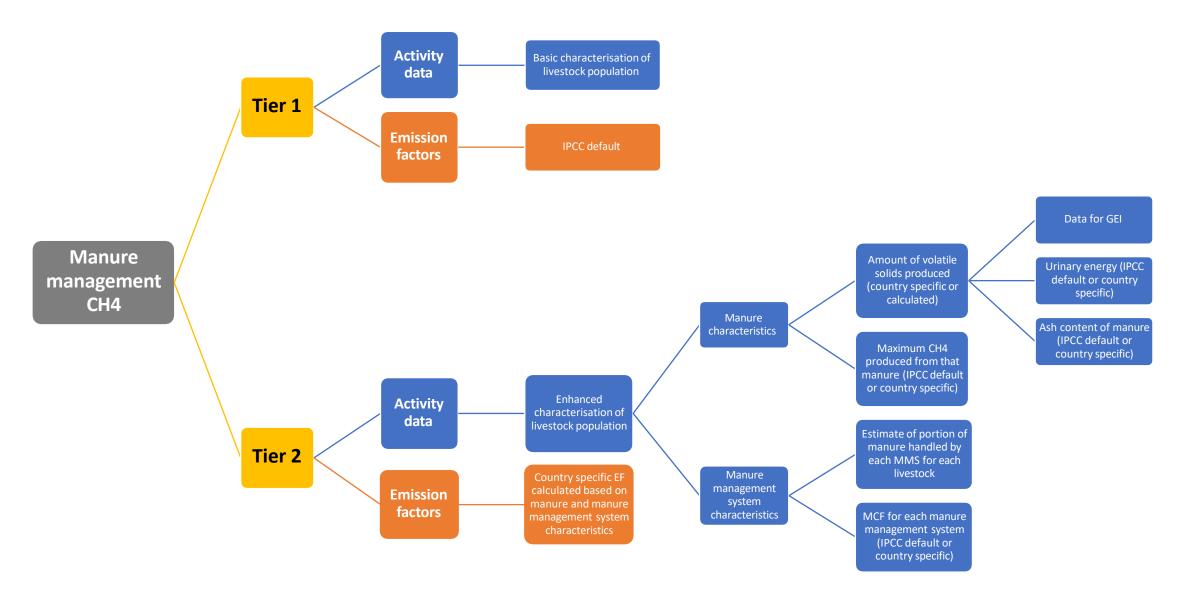
 $N_{(T)}$ = the number of head of livestock species/category T in the country

T = species/category of livestock

Manure Management (CH₄): Emission factors


- Tier 1:
 - Relies on default methane emission factors for manure management by livestock category or subcategory
 - Default emission factors represent the range in manure volatile solids content and manure management practices used in each region

• Tier 2:


- Relies on two primary input parameters that affect the selection of methane emission factors from manure
 - Manure characteristics and
 - Manure management system (MMS) usage

Manure Management (CH₄): Tier 2 EF

• Need: Manure characteristics (volatile solids; CH4 producing capacity)

Manure management CH₄ method summary

Quiz

- If you wanted to improve the Tier level for manure management which factors would you focus on?
 - A. Activity data
 - B. Emission factors

Quiz

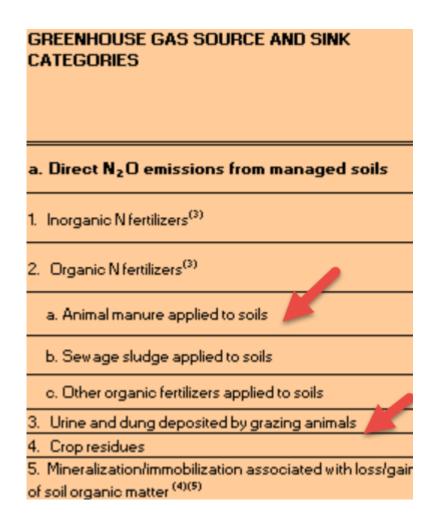
- If you wanted to improve the Tier level for manure management which factors would you focus on?
 - A. Activity data
 - B. Emission factors

Questions?

Manure Management (N₂O)

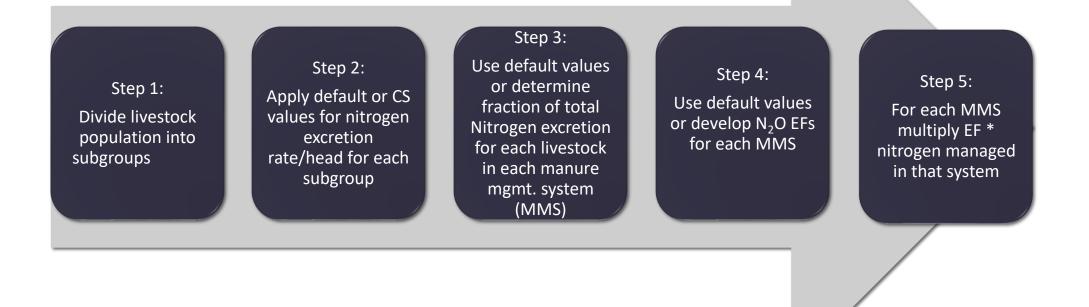
N₂O Emissions from Manure Management

Direct N₂O emissions


Indirect N₂O emissions

- Result from nitrification / denitrification of nitrogen in the manure
- N₂O emissions affected by:
 - Amount of manure produced
 - Nitrogen content of manure
 - Manure management system
 - Duration of the storage

- Result from volatilization of nitrogen in the form of ammonia and NOx
- The amount of volatilization is a function of storage time and to a lesser extent, temperature
- Indirect N₂O emissions also through leaching and run-off; however, 2006 GL provide only Tier 2 method


What is not included under Manure Management?

- The following N₂O emissions are included under agricultural soils, not manure management
 - Manure applied to soils as organic fertilizer
 - Manure deposited on fields from animals on pasture, range and paddock

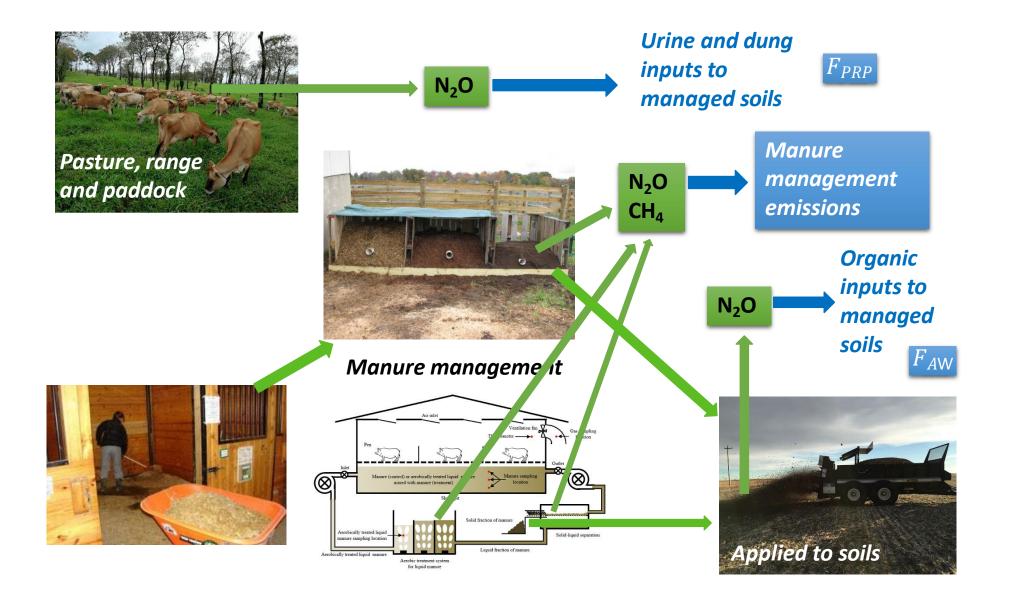
<u>Direct</u> N₂O Emissions from Manure Management: General Approach

General approach applies to all methodological tiers and can be performed at varying levels of detail and complexity

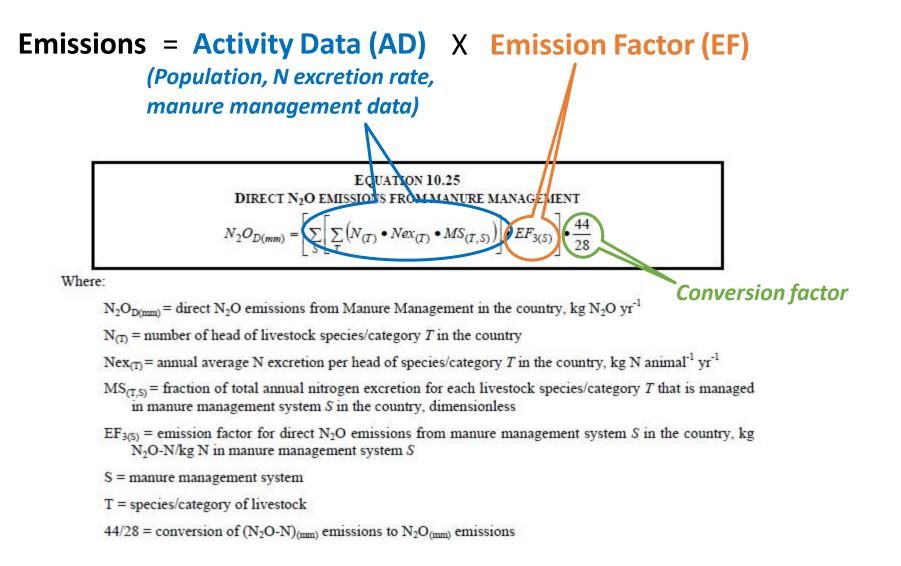
Direct N₂O from Manure Management

EQUATION 10.25 DIRECT N₂O EMISSIONS FROM MANURE MANAGEMENT

$$N_2 O_{D(mm)} = \left[\sum_{S} \left[\sum_{T} \left(N_{(T)} \bullet Nex_{(T)} \bullet MS_{(T,S)}\right)\right] \bullet EF_{3(S)}\right] \bullet \frac{44}{28}$$


Where:

 $N_2O_{D(mm)}$ = Direct N_2O emissions from Manure Management in the country, kg N_2O yr⁻¹ $N_{(T)}$ = number of animals/category *T* in the country

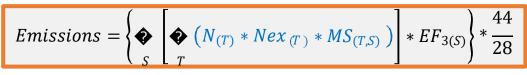

 $N_{ex(T)}$ = annual average N excretion/head of species/category T, kg N animal⁻¹ yr⁻¹

- MS_(T,S) = fraction of total annual N excretion for each livestock species/category T that is managed in manure management system S
- $EF_{3(S)}$ = Emission factor for direct N₂O emissions from manure management system S in the country, kg N₂O-N/kg N in manure management system S
- S = manure management system
- T = species/category of livestock
- $44/28 = \text{conversion of } (N_2O-N)(\text{mm}) \text{ emissions to } N_2O(\text{mm}) \text{ emissions}$

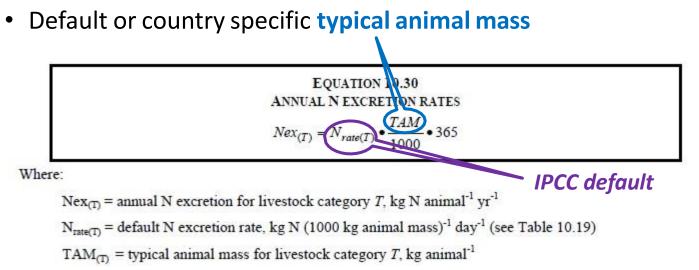
Manure Management N₂O: Manure allocation

Manure Management N₂O: Direct emissions

N₂O Conversion note Note on conversion factor


- Calculations give output as $N_2O\text{-}N$ and this needs to be converted to N_2O

$$N_2 O = N_2 O - N * \frac{CC}{28}$$


• Applies to all N₂O emission equations

Manure Management Direct N₂O: Activity data (T1)

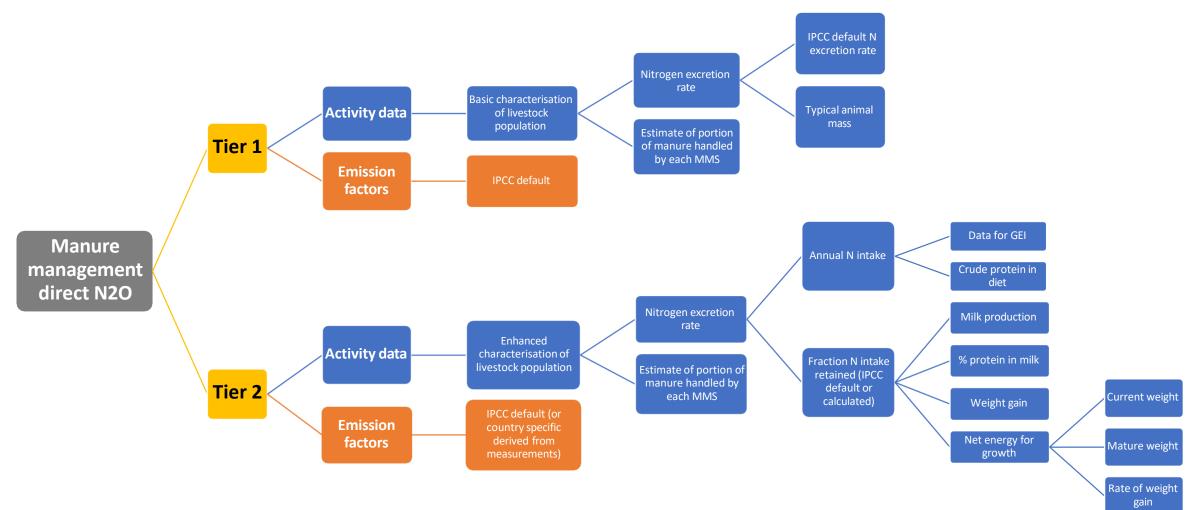
• Tier 1

- Animal population data according to basic characterization
- Default or country specific manure management system usage data
- Annual nitrogen excretion rates which can be calculated from:
 - Default daily N excretion rate

Manure Management Direct N₂O: Activity data (T2)

• Tier 2

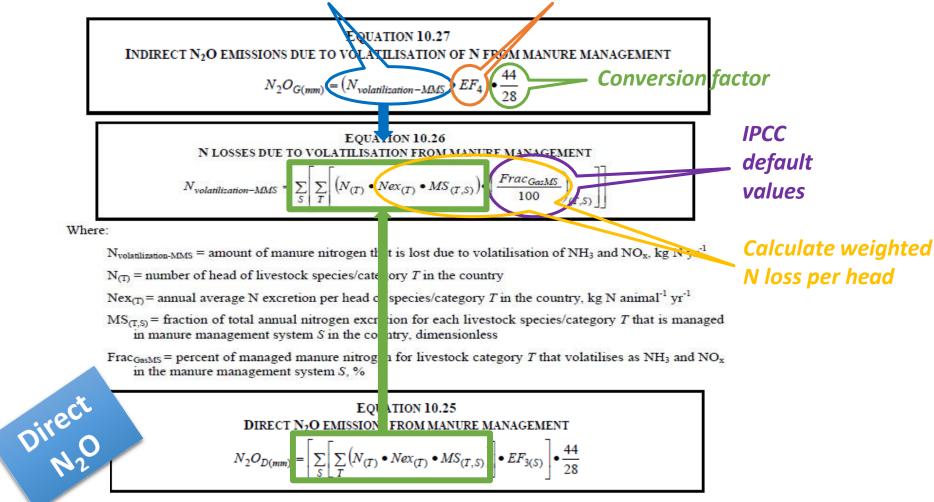
- Animal population data according to enhanced characterization
- Country-specific manure management system usage data from national statistics or independent survey
- Country specific nitrogen excretion defined by the livestock population characterisation based on total annual N intake and total annual N retention data of animals.


$$Emissions = \left\{ \bigotimes_{S} \left[\bigotimes_{T} \left(N_{(T)} * Nex_{(T)} * MS_{(T,S)} \right) \right] * EF_{3(S)} \right\} * \frac{44}{28}$$

Manure Management Direct N₂O: Emission factors

) 44
$Emissions = \left\{ \mathbf{O}_{s} \right\}$	$\left. \left(N_{(T)} * Nex_{(T)} * MS_{(T,S)} \right) \right * EF_{33(S)}$	

- Tier 1
 - Default emission factor from IPCC Guidelines
 - Emissions factors are per MMS not per livestock
- Tier 2
 - Country specific emission factor (*measured*)


Manure management direct N₂O method summary

Indirect N₂O from manure management

Manure Management Indirect N₂O: Volatilisation (Tier 1)

Manure Management Indirect N₂O: Volatilisation (Tier 1)

Frac_{GasMS} = percent of managed manure nitrogen for livestock category *T* that volatilises as NH₃ and NO_x in the manure management system *S*, %

EMISSION FACTOR EF = 0.01 kg N₂O-N for all MMS (see equation 10.27 of 2006 GL)

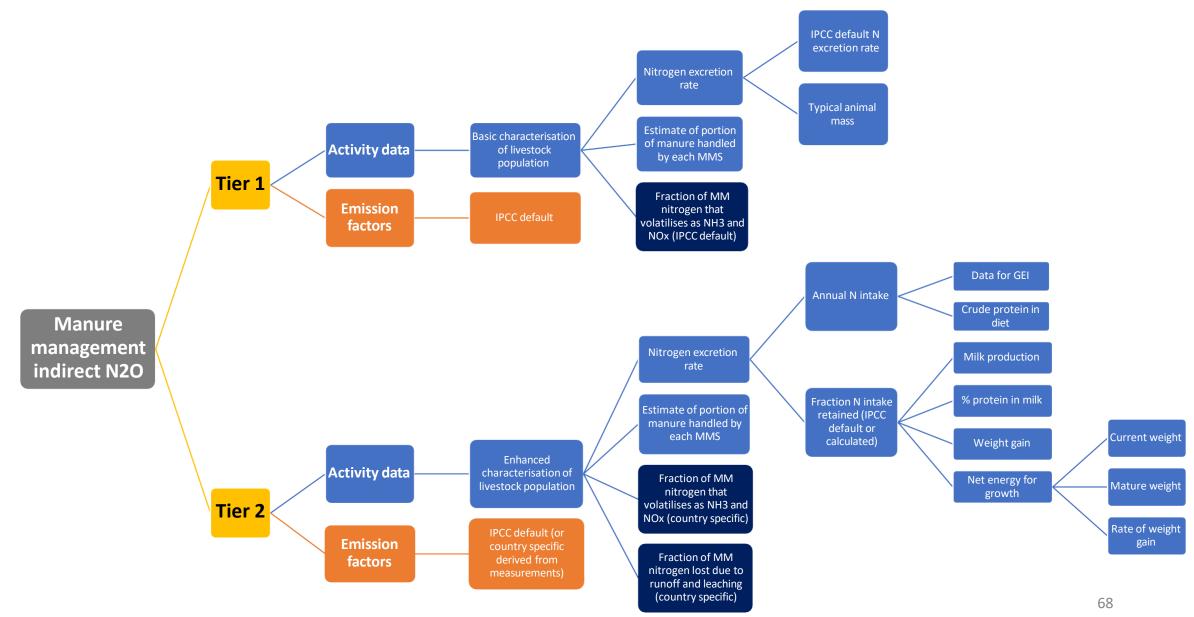
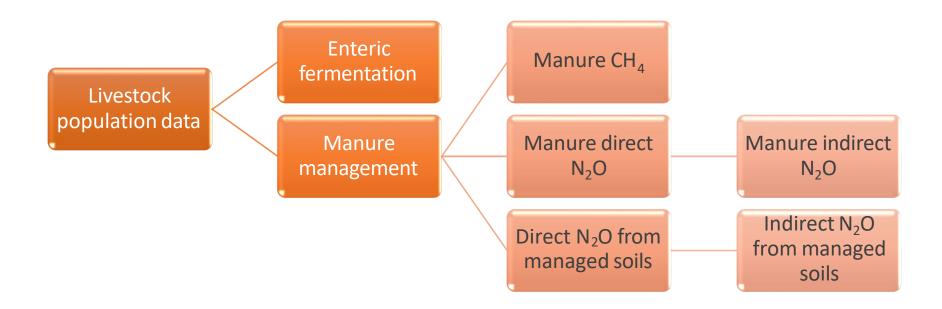

DEFAULT VALUES FOR NITROGEN LOSS DUE TO VOLATILISATION OF NH3 AND NO _X FROM MANURE MANAGEMENT						
Animal type	Manure management system (MMS) ^a	N loss from MMS due to volatilisation of N-NH3 and N-NO _x (%) ^b Frac _{GasMS} (Range of Frac _{GasMS})				
Swine	Anaerobic lagoon	40% (25 – 75)				
	Pit storage	25% (15-30)				
	Deep bedding	40% (10-60)				
	Liquid/slurry	48% (15-60)				
	Solid storage	45% (10-65)				
Dairy Cow	Anaerobic lagoon	35% (20 - 80)				
	Liquid/Slurry	40% (15-45)				
	Pit storage	28% (10-40)				
	Dry lot	20% (10-35)				
	Solid storage	30% (10-40)				
	Daily spread	7% (5-60)				
Poultry	Poultry without litter	55% (40 - 70)				
	Anaerobic lagoon	40% (25 - 75)				
	Poultry with litter	40% (10-60)				
Other Cattle	Dry lot	30% (20 – 50)				
	Solid storage	45% (10-65)				
	Deep bedding	30% (20-40)				
Other ^c	Deep bedding	25% (10-30)				
	Solid storage	12% (5-20)				

TABLE 10.22

Manure Management Indirect N₂O: Volatilisation (Tier 2)


- Follow the same equation as for Tier 1 but include country specific data for some of the variables, such as:
 - Nitrogen excretion rates
 - NH₃ emissions from an NH₃ inventory (if a country has one)
- Requires a detailed characterisation of the flow of nitrogen throughout the animal housing and manure management systems

Manure management indirect N₂O method summary

Quiz

• Why is it particularly important to improve the accuracy of livestock population and manure management usage data?

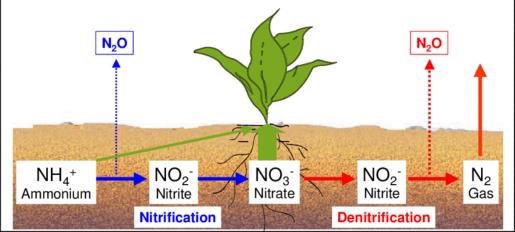
Data collection template for the Agriculture sector

	А	В	С	D	E	F	G	н	I.	J
1	IPCC Clas	ssification	IPCC Sub category	Category species characterization	Typical Animal Mass (kg/head)	Nitrogen excretion rate	n 2006		2007	
2	Livestock Enteric Fermentation	Livestock Manure Management					Annual Activity Data If not estimated write NE or if not occuring (NO).		Annual Activity D If not estimated write if not occuring (N	
3			Source: 2006 IPCC Guidelines	Source: List of species assigned to IPCC category, per the country's basic characterization of livestock	Source: Default IPCC values for Typical Animal Mass (TAM) are built into the IPCC software. If TAM is known, report it here. If not known apply default.	software. If Nex is	Annual average number of head	Type of manure management system Select from list below, source: 2006 IPCC Guidelines, Table 10.18). (Add rows as necessary for multiple MMS per livestock type)	Annual average number of head	Type of manu management Select from lis below, source IPCC Guidelin Table 10.18). rows as neces for multiple N per livestock
4	2.4		·					·		
	3.A 3.A.1	3.A.2	1							
	3.A.1.a	3.A.2.a	Cattle							
7	3.A.1.a.i	3.A.2.a.i	Dairy Cows							
	3.A.1.a.ii	3.A.2.a.ii	Other Cattle							
9	3.A.1.b	3.A.2.b	Buffalo							
-	3.A.1.c	3.A.2.c	Sheep							
	3.A.1.d	3.A.2.d	Goats							
	3.A.1.e	3.A.2.e	Camels							
13	3.A.1.f	3.A.2.f	Horses							
14	3.A.1.g	3.A.2.g	Mules and Asses							
15	3.A.1.h	3.A.2.h	Swine							
16	Not applicable	3.A.2.i	Poultry							
17	3.A.1.j	3.A.2.j	Other (please specify)							
18										
19	Manure Manger	nure Mangement System Description of manure management system								
20	Pature/Range/Paddock The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed									
	Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion									
- 1	Daily spread The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to stacked due to									
•	→ Livestoc	k & Manure Manag	gement Biomass burni	ng Soils Rice cultiv	ation Harvested We	ood Product Supple	ement-Cro	plan (+) 🗄 🔳		•
lead	eady									

Agricultural soils/ Managed soils

Source of Direct and Indirect N₂O Emissions

•N₂O is produced naturally in soils through the processes of nitrification and denitrification.

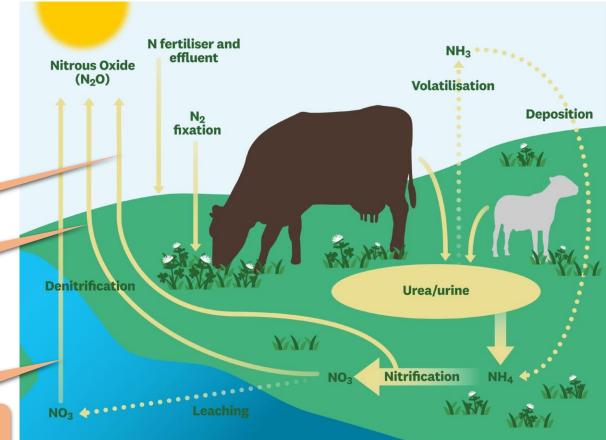

•N₂O emissions a function of the availability of inorganic N in the soil.

•Direct N₂O emissions are from human-induced net N additions to soils (e.g. synthetic or organic fertilizers, deposited manure, crop residues, sewage sludge), or of mineralisation of N in soil organic matter following drainage/management of mineral soils, or cultivation on organic soils.

•Indirect N₂O emissions from volatilization and leaching and runoff.

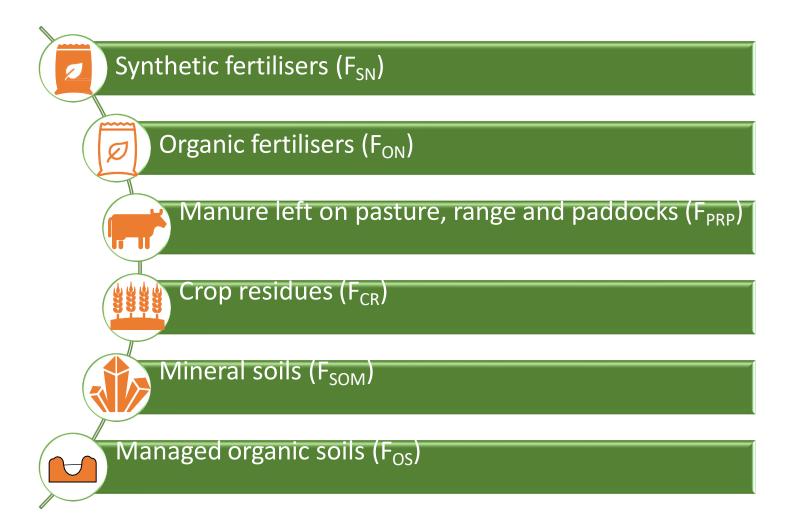
Managed soils: Introduction

N₂O produced through the processes of nitrification and denitrification



Emissions occur **directly** from the soils where the N is applied

Emissions occur **indirectly** through volatilisation of NH₃ and NO_x in the atmosphere and the subsequent deposition of N to soils and waterbodies


Emissions occur indirectly through leaching and runoff of N, mainly as NO₃⁻, to groundwater and surface water

Direct and indirect N₂O emissions

Source: De Klein CAM, Pinares-Patino C, Waghorn GC (2008). Greenhouse gas emissions. Book chapter. Environmental Impacts of Pasture-Based Farming, pg 1-32 7

Managed soils: Nitrogen inputs

Managed soils: Direct N₂O

EQUATION 11.1 DIRECT N₂O EMISSIONS FROM MANAGED SOILS (TIER 1) $N_2O_{Direct}-N = N_2O-N_{Ninputs} + N_2O-N_{OS} + N_2O-N_{PRP}$

 $N_2O_{\text{Direct}} -N$ = annual direct N_2O-N emissions produced from agricultural soils, kg N_2O-N yr⁻¹ N_2O-N_{Ninputs} = annual direct N2O-N emissions from N inputs to agricultural soils, kg N2O-N yr⁻¹ N_2O-N_{OS} = annual direct N_2O-N emissions from agricultural organic soils, kg N_2O-N yr⁻¹ N_2O-N_{PRP} = annual direct N_2O-N emissions from urine and dung inputs to grazed soils, kg N2O-N yr⁻¹

- Calculations give output as $N_2O\text{-}N$ and this needs to be converted to N_2O

$$N_2 O = N_2 O - N * \frac{44}{28}$$

Managed soils direct N₂O: Nitrogen inputs Tier 2

 $N_2 O_{DD} - N = N_2 O_N + N_2 O_N$

- For a Tier 2 of N inputs more detailed activity and emission factor data are required:
 - There are different emission factors for:
 - Synthetic and organic fertilisers and
 - Crop residues and SOM

EQUATION 11.2 DIRECT N₂O EMISSIONS FROM MANAGED SOILS (TIER 2) $N_2O_{Direct} - N = \sum_i (F_{SN} + F_{ON})_i \bullet EF_{1i} + (F_{CR} + F_{SOM}) \bullet EF_1 + N_2O - N_{OS} + N_2O - N_{PRP}$

Managed soils direct N₂O: N-input emission factors

• IPCC default values are provided

$N_2 O_{DD} - N = N_2 O_N_{N} + N_2 O_N_{OD} + N_2 O_N_{PRP}$	
---	--

$TABLE \ 11.1$ Default emission factors to estimate direct N2O emissions from managed soils			$NNO - N_N p$ $= [(F_{SN} + F_{ON} + F_{CR} + F_{SOOM}) *]$
Emission factor	Default value	Uncertainty range	$= + [(F_{SN} + F_{OON} + F_{CR} + F_{SOOM})_{FR} *$
EF ₁ for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon [kg N ₂ O–N (kg N) ⁻¹]	0.01	0.003 - 0.03	
EF _{1FR} for flooded rice fields [kg N ₂ O-N (kg N) ⁻¹]	0.003	0.000 - 0.006	
$EF_{2 CG, Temp}$ for temperate organic crop and grassland soils (kg N ₂ O–N ha ⁻¹)	8	2 - 24	
$EF_{2 CG, Trop}$ for tropical organic crop and grassland soils (kg N_2O –N ha ⁻¹)	16	5 - 48	
EF _{2F, Temp, Org, R} for temperate and boreal organic nutrient rich forest soils (kg N ₂ O-N ha ⁻¹)	0.6	0.16 - 2.4	
EF _{2F, Temp, Org, P} for temperate and boreal organic nutrient poor forest soils (kg N ₂ O–N ha ⁻¹)	0.1	0.02 - 0.3	
EF _{2F, Trop} for tropical organic forest soils (kg N ₂ O–N ha ⁻¹)	8	0 - 24	
EF _{3PRP, CPP} for cattle (dairy, non-dairy and buffalo), poultry and pigs [kg N ₂ O-N (kg N) ⁻¹]	0.02	0.007 - 0.06	
EF3PRP, SO for sheep and 'other animals' [kg N2O-N (kg N)-1]	0.01	0.003 - 0.03	

EF_{2CG, Trop}, EF_{2F,Trop}: Klemedtsson et al., 1999, IPCC Good Practice Guidance, 2000; EF_{2F, Temp}: Alm et al., 1999; Laine et al., 1996 Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002; EF_{3, CPP}, EF_{3, SO}: de Klein, 2004.

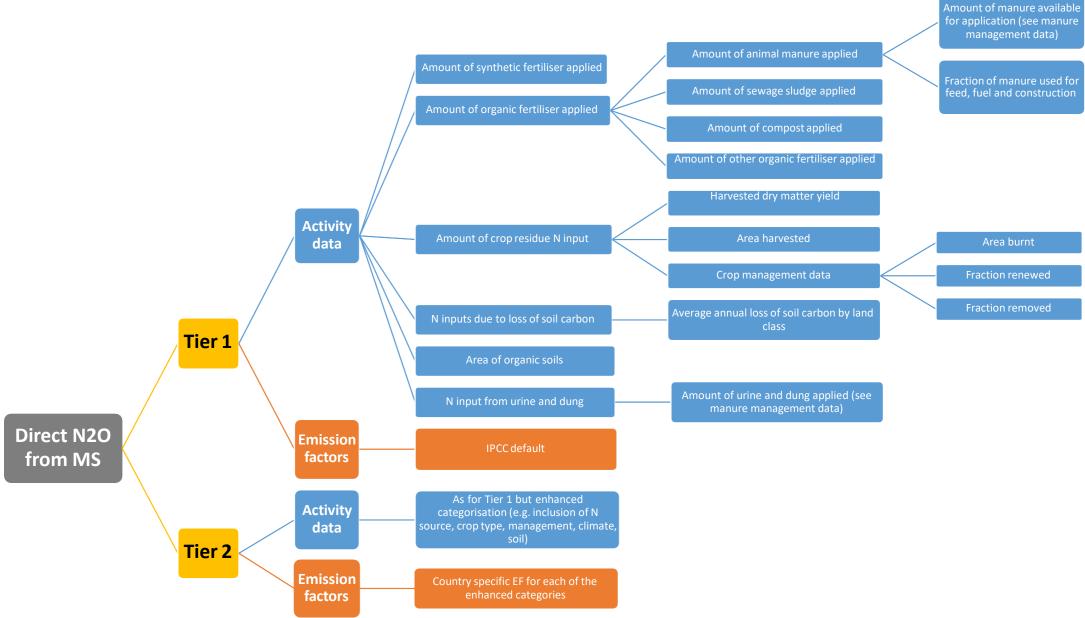
Managed soils direct N₂O: N-input activity data summary

F_{CR} from crop production data

(national or FAO) and IPCC

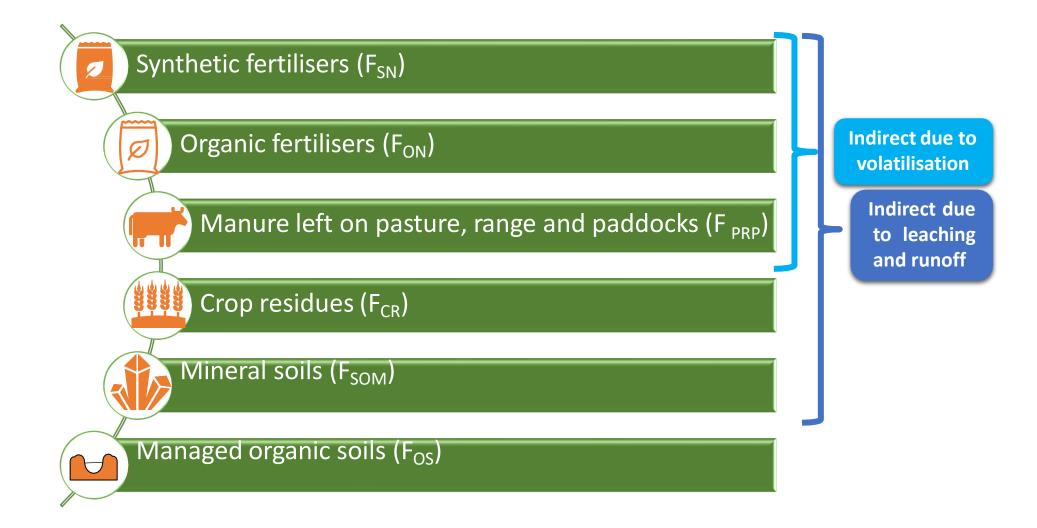
default fractions

- Activity data:
 - F_{SN}
 - Amount of synthetic N fertiliser applied to soils
 - F_{ON}
 - Animal manure inputs (from livestock manure management)
 - Amount of sewage sludge N applied to soils
 - Amount of compost N applied to soils
 - Amount of other organic N inputs to the soils
 - F_{CR}
 - Harvested dry matter

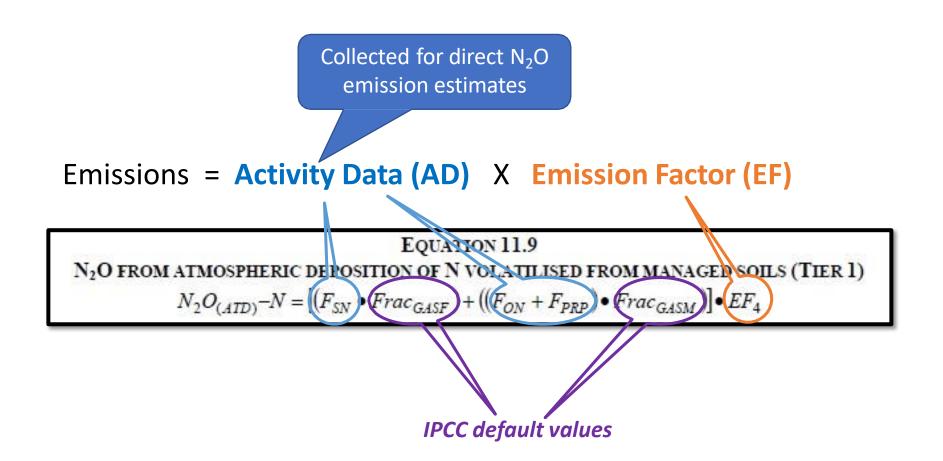

Total annual area harvested

- Crop residue management
- F_{SOM}
 - Change in soil carbon due to land management

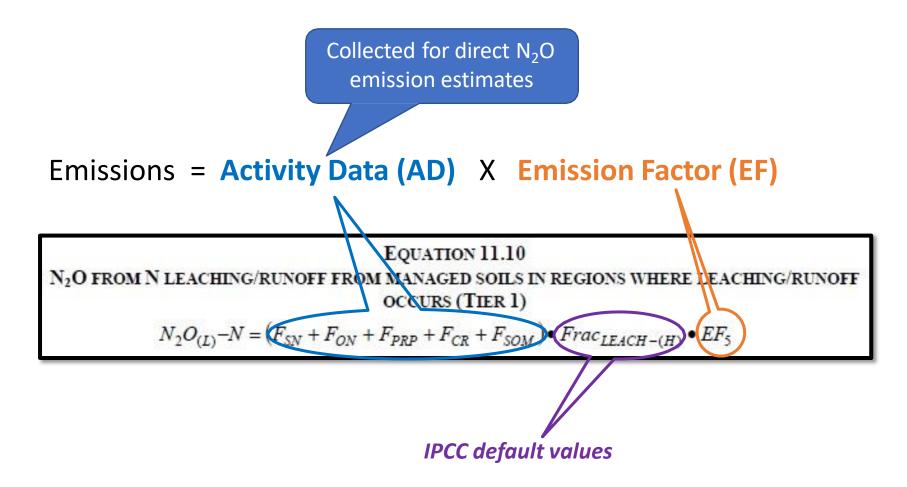
Synthetic fertiliser consumption data (F_{SN}) should be collected from official statistics (e.g. national bureaux of statistics) or International Fertiliser Industry Association (IFIA), FAO


For soils and flooded rice

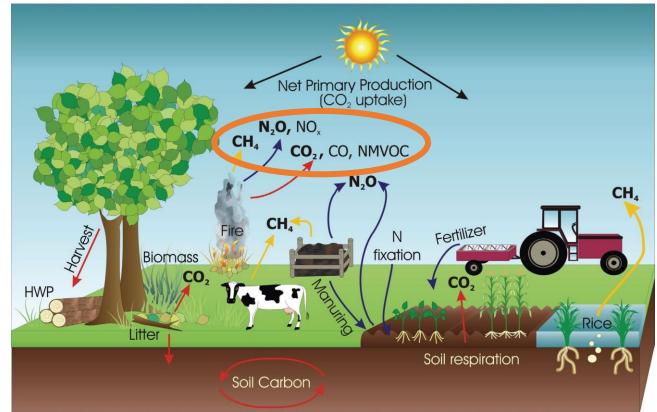
Direct N₂O from managed soils method summary

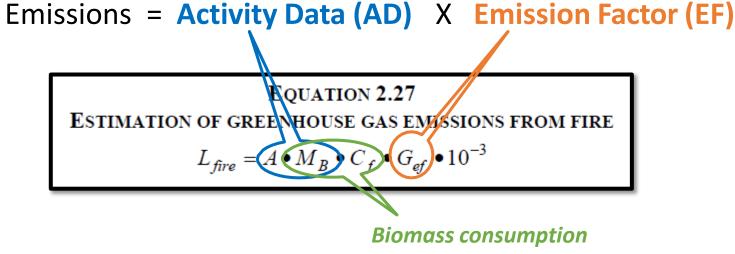


Indirect N₂O from managed soils


Managed soils indirect N₂O: Introduction

Managed soils indirect N₂O: Volatilisation


Managed soils indirect N₂O: Leaching and runoff



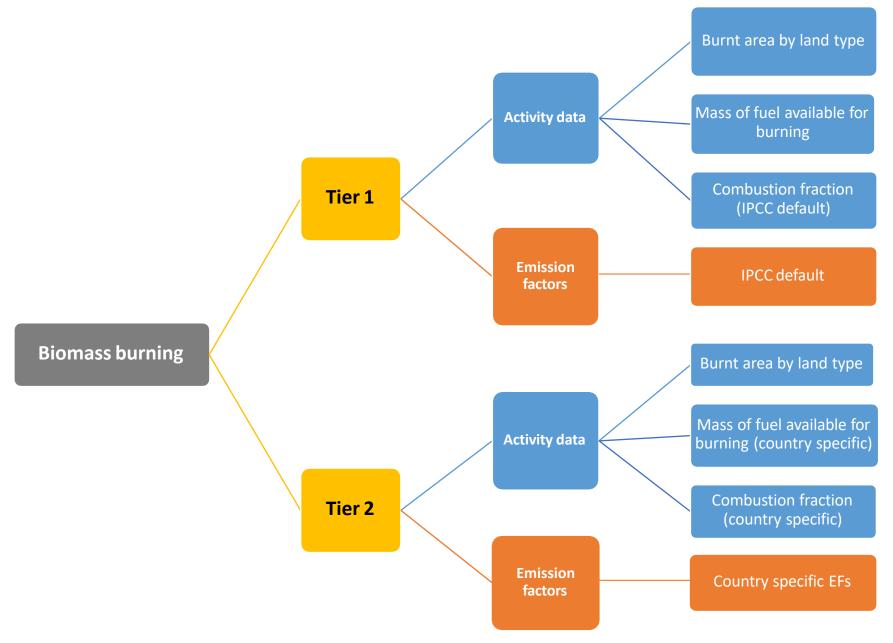
Biomass burning: Introduction

- Includes the emissions of gases from burning due to:
 - Crop harvesting or clearing
 - Crop residue burning
 - Wild and controlled fires
 - From all land classes (Forest lands, croplands, grasslands, wetlands)
- Does not include emissions from burning biomass as a fuel
 - This is reported under energy

Biomass burning: Methodology

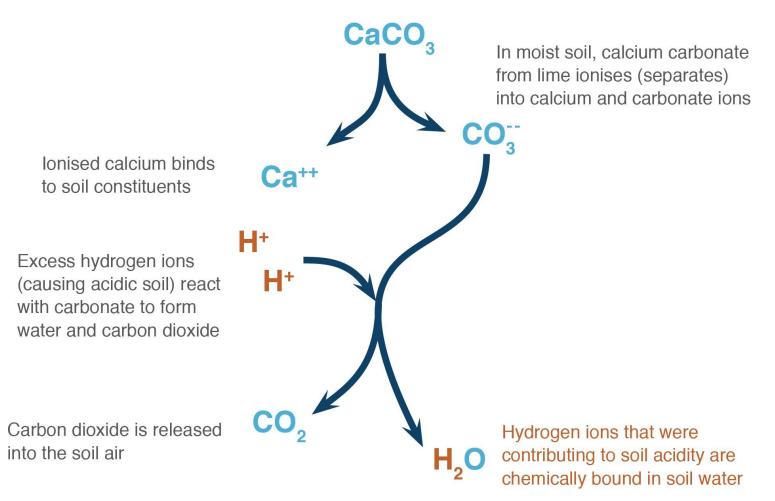
Lfire = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH4, N2O, etc.

- A = area burnt, ha
- M_B = mass of fuel available for combustion, tonnes ha⁻¹. This includes biomass, ground litter and dead wood. When Tier 1 methods are used then litter and dead wood pools are assumed zero, except where there is a land-use change (see Section 2.3.2.2).
- Cf = combustion factor, dimensionless (default values in Table 2.6)
- G_{ef} = emission factor, g kg⁻¹ dry matter burnt (default values in Table 2.5)
- Note: Where data for M_B and C_f are not available, a default value for the amount of fuel actually burnt (the product of M_B and C_f) can be used (Table 2.4) under Tier 1 methodology.

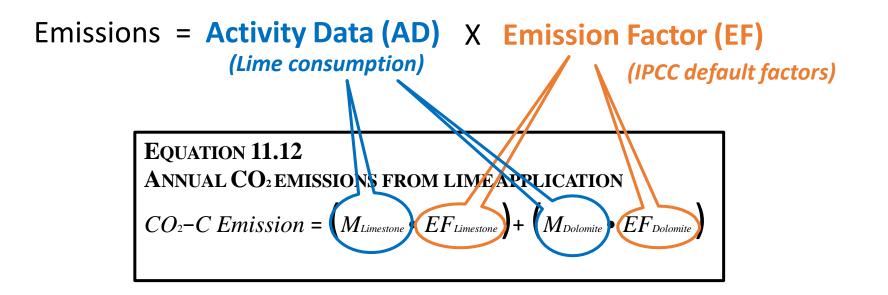

Biomass burning: Activity data

- Area burnt:
 - Data often obtained from satellite data (such as MODIS)
 - Wildfires and controlled fires together
 - Need burnt area per land type and, if available, per land conversion
 - Controlled fire data often difficult to separate out
 - Satellite data often too course for this
 - Ground-based data such as from forest inventories, plantation companies, croplands
 - Report wildfire and controlled fires separately if possible
- Mass of fuel available for combustion
 - Includes biomass and DOM
 - IPCC default biomass data
 - Country-specific data (Tier 2) co-ordinate with land sector compiler
 - For crop residues only residues burn therefore need data on residue ratios
- Combustion factors
 - Defaults provided by IPCC
 - Country-specific values (Tier 2)

Biomass burning: Emission factors

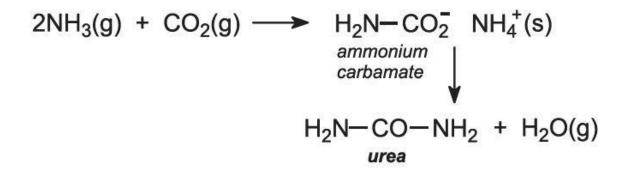

- IPCC provides default emission factors
 - Country-specific emissions factors can be applied for a Tier 2 approach

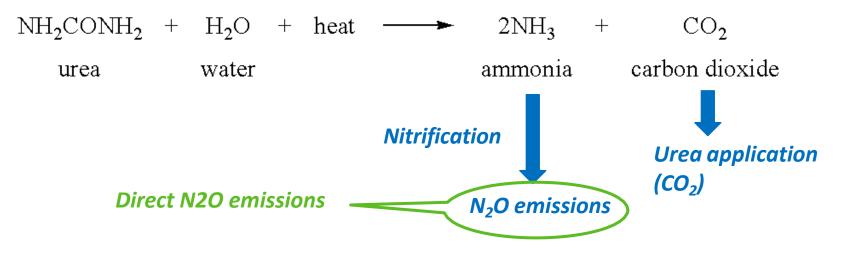
Biomass burning method summary



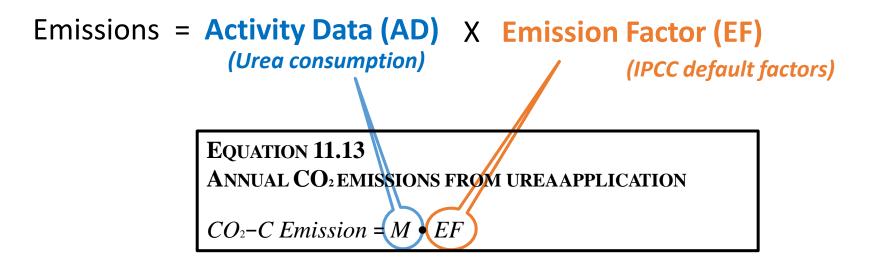
CO₂ from lime and urea application

Lime application: Introduction


Lime application: Methodology

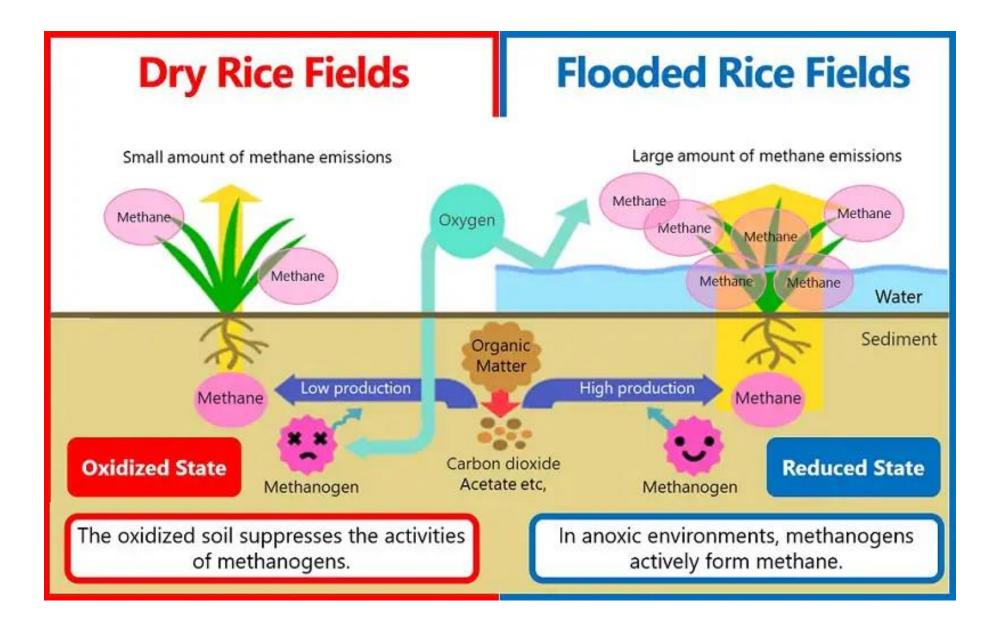

 CO_2 --C Emission = annual C emissions from lime application, tonnes C yr₋₁ M = annual amount of calcic limestone (CaCO₃) or dolomite (CaMg(CO₃)₂), tonnes yr₋₁ EF = emission factor, tonne of C (tonne of limestone or dolomite) -1

Urea application: Introduction


Urea production : CO₂ is fixed during the production

Urea application to soil : CO₂ released when water applied

Urea application: Methodology (CO₂)



 CO_2 -C Emission = annual C emissions from urea application, tonnes C yr₋₁ M = annual amount of urea fertilisation, tonnes urea yr₋₁ EF = emission factor, tonne of C (tonne of urea)₋₁

CH₄ from rice cultivation

Rice cultivation emissions: Introduction

Rice cultivation: Methodology (T1 & T2) Emissions = Activity Data (AD) X Emission Factor (EF) (Harvested area, cultivation period) EQUATION 5.1 CH₄ EMISSIONS FROM RICE CULTIVATION $CH_{4 Rice} = \sum_{i,j,k} (EF_{i,j,k} \bullet A_{i,j,k} \bullet 10^{-6})$

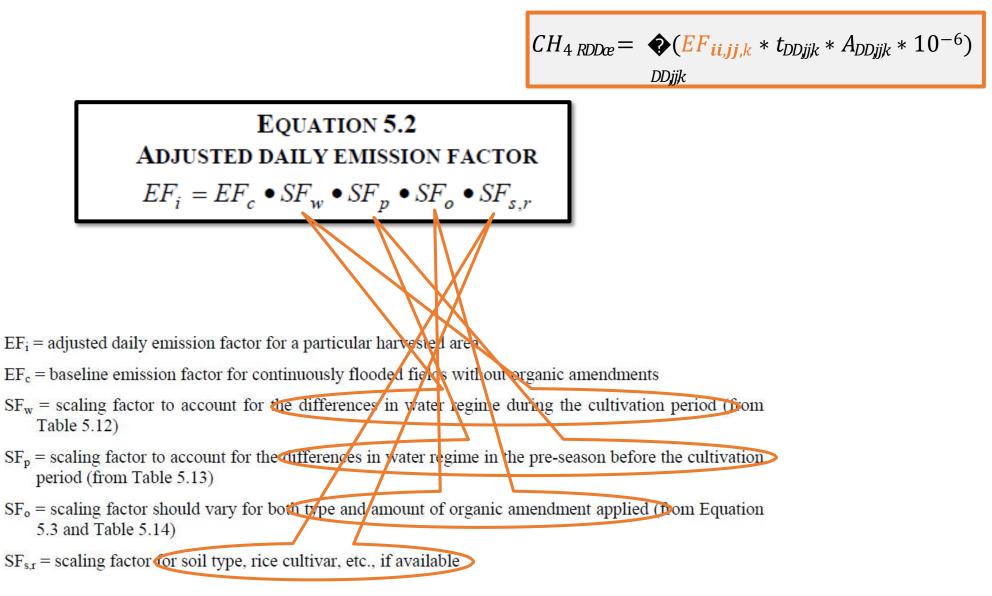
- $CH_{4 Rice}$ = annual methane emissions from rice cultivation, Gg $CH_4 yr^{-1}$
- EF_{ijk} = a daily emission factor for *i*, *j*, and *k* conditions, kg CH₄ ha⁻¹ day⁻¹
- t_{ijk} = cultivation period of rice for *i*, *j*, and *k* conditions, day
- A_{ijk} = annual harvested area of rice for *i*, *j*, and *k* conditions, ha yr⁻¹
- *i*, *j*, and *k* = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH₄ emissions from rice may vary

Rice cultivation: Area divisions

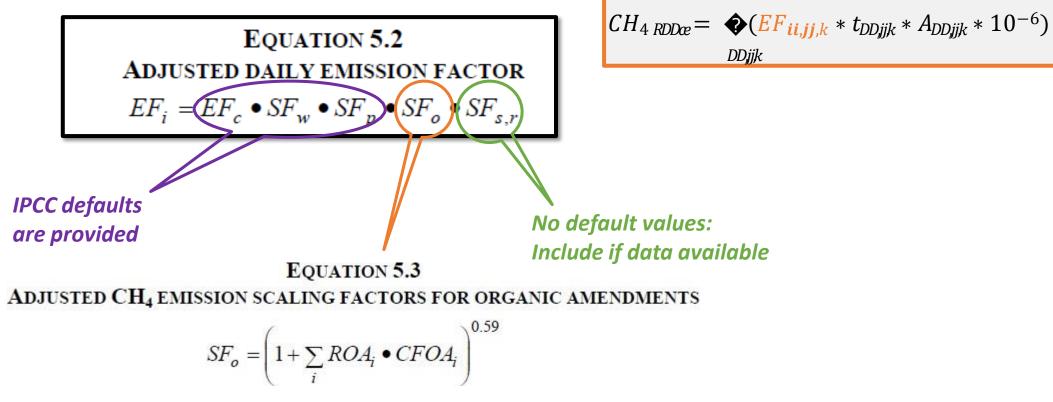
- Classify the rice land area into its various types:
- For Tier 1 should be split into at least 3 baseline water regimes:
 - Irrigated
 - Rainfed
 - Upland
- Encouraged to include as many of the cultivation characteristics as possible:
 - Regional differences in rice cropping practices
 - Multiple crops
 - Water regime:
 - Ecosystem type
 - Flooding pattern
 - Organic amendments to soils
 - Other conditions:

 $CH_{4 RDDae} = \bigoplus (EF_{ii,jj,k} * t_{ii,jj,k} * A_{ii,jj,k} * 10^{-6})$ ii,jj,k

- Soil type
- Rice cultivar
- Sulphate containing amendments


Rice cultivation: Activity data

$$CH_{4 RDDae} = \bigoplus (EF_{DD,jj,k} * t_{ii,jj,k} * A_{ii,jj,k} * 10^{-6})$$


$$DD_{jjk}$$

- Once area has been divided into the various categories, activity data is required for each of these areas:
 - Harvested area
 - Cultivation period
- Also need to collect data for EF adjustments:
 - Amount of organic amendment applied
- Note: Remember that nitrogen input data will also be required in the estimation of direct and indirect emission calculations
 - calculation component specific for flooded rice

Rice cultivation: Emission factors

Rice cultivation: Emission factors

- SF_o = scaling factor for both type and amount of organic amendment applied
- ROA_i = application rate of organic amendment *i*, in dry weight for straw and fresh weight for others, tonne ha⁻¹
- $CFOA_i$ = conversion factor for organic amendment *i* (in terms of its relative effect with respect to straw applied shortly before cultivation) as shown in Table 5.14.

Thank You!

Questions?