

Hands-on training Workshop on National GHG Inventory Preparation and Reporting under the ETF: Agriculture, IPPU and Waste Sector

Methodological Choice and Identification of Key Categories

Uncertainty Analysis

16 – 19 April 2024 Belize

Brittany Meighan Rancharan Regional Network Coordinator – Anglophone Caribbean CBIT-GSP

- Tiers: A tier represents a level of methodological complexity.
- Usually three tiers are provided:
 - Tier 1 is the basic method,
 - Tier 2 intermediate and
 - Tier 3 most demanding in terms of complexity and data requirements
- Tiers 2 and 3 are sometimes referred to as <u>higher tier methods</u> and are generally considered to be more accurate

- Methodological choice for individual source and sink categories is important in managing overall inventory uncertainty (it is lower when emissions and removals are estimated using the most rigorous methods)
- However, these methods generally require more extensive resources for data collection, so it may not be feasible to use more rigorous method for every category (therefore it is *good practice* to identify those categories that have the greatest contribution to overall inventory)
- By identifying these <u>key categories</u> in a systematic and objective manner, inventory compilers can prioritise their efforts and improve their overall estimates (it is <u>good</u> <u>practice</u> to use results of key category analysis as a basis for methodological choice to improve inventory quality and to increase confidence in the GHG estimates)

A *key category* is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of:

- the absolute level,
- the trend, or
- the uncertainty in emissions and removals.

Key categories should be the priority for countries during inventory resource allocation for data collection, compilation, quality assurance/quality control and reporting.

In general, more detailed higher tier methods should be selected for key categories.

CBIT-GSP How to Define Key Categories

FICAT

- Disaggregate categories to the lowest possible level:
 - to sub-category (e.g., to a fuel type liquid, gaseous, solid)
 - to individual gas (use GWP).
- Apply two Approaches:
 - Approach 1 Level and Trend Assessment
 - Approach 2 Level/Trend + Uncertainty Assessment
- Approach 1 Level and Trend Assessment:

Key categories - 95% cumulative effect

- Approach 2 Level/Trend + Uncertainty Assessment: Key categories - 90% cumulative effect
- *Removals:* expressed as positive numbers

(inclusion/exclusion)

Identifying Key Categories via KCA

A key category analysis helps to focus your efforts and determine the appropriate methodological choice to estimate emission per category or subcategory

There are three approaches for a Key Category Analysis

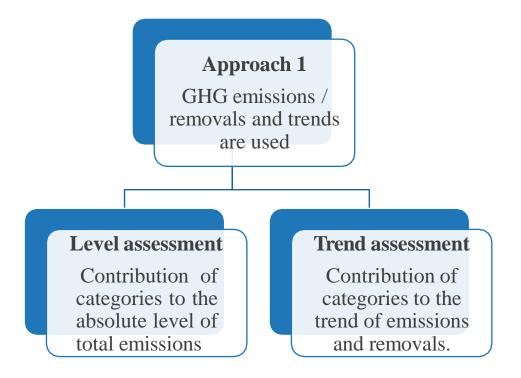
- Approach 1: Predetermined cumulative emissions threshold (e.g., 95%)
- Approach 2: Contribution to uncertainty
- Approach 3: Qualitative criteria

Approaches 1 and 2 are applied in two ways:

- 1. Level assessment by calculating the influence of a category on total emissions.
- 2. Trend assessment by calculating the influence of a category on the overall inventory emissions time series trend

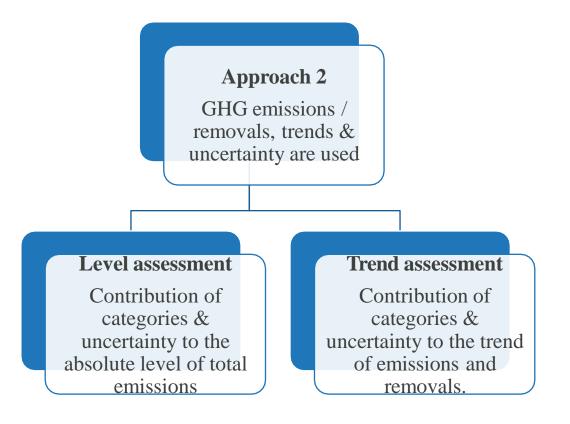
If data is available you should apply all 3 approaches.

You should always apply Qualitative criteria with either Approach 1, Approach 2 or both.



How to combine approaches and assessments over time

- Most countries start out with the level assessment under approach 1
- Then add the trend assessment, once they have a time series
- This is what the majority of developing countries do
- Moving to the level + trend assessment under approach 2 can happen when the national GHG inventory is more advanced



NG

How to combine approaches and assessments over time

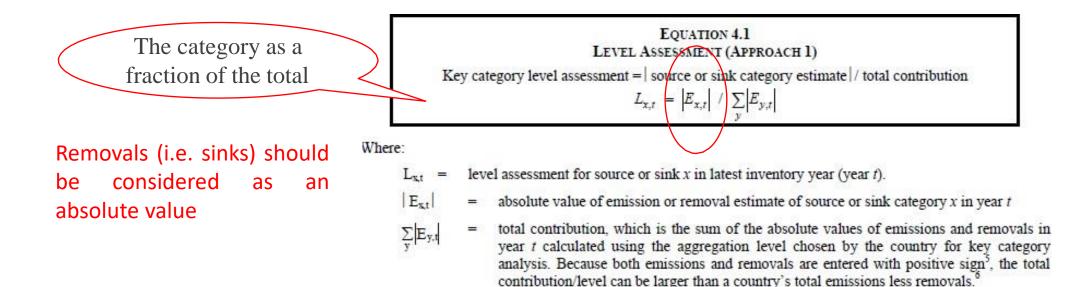
Belize's next progressive step is to commence conducting uncertainty assessments on the AD, EF and other parameters to execute an Approach 2 to identifying addition key categories that have not been identified using Approach 1

REMEMBER: If data is available you should apply all 3 approaches.

You should always apply Qualitative criteria with either Approach 1, Approach 2 or both.

KCA - Approach 1 – Level Assessment – Step by Step

- **1. Estimate emissions** and **removals** from all known activities using tier 1 methods
- 2. Convert removals into 'emissions' (use absolute values)
- 3. Calculate total emissions
- 4. Calculate % contribution of each category to total 'emissions'
- 5. Arrange all categories in descending order (based on % contribution)
- 6. Add up the % contribution of categories until you reach 95% of total emissions
- 7. For categories between 95-97%, it is good practice to consider whether significant via a **qualitative analysis**.



Approach 1: Level Assessment

The level Assessment uses the contribution of a category to the inventory total

The 2006 IPCC Guidelines provide the following formula:

KCA - Approach 1 – Trend Assessment – Step by Step

- 1. Calculate the change of category emissions between the two years
- 2. Calculate **the change in total emissions** between the two years
- 3. Calculate trend assessment
- 4. Calculate **contribution** to the trend
- **5. Repeat Steps 1-4 for all source and sink categories** and estimate the individual contributions to the trend.
 - Once you have all individual contributions , then the remaining steps are similar to the Level assessment, where
- 6. Rank sources according to their contribution to the trend
- 7. Calculate cumulative contributions
- **8. Identify sources contributing to 95% of the trend**. These sources are Key categories according to the Trend Assessment.

Example of Level Assessment

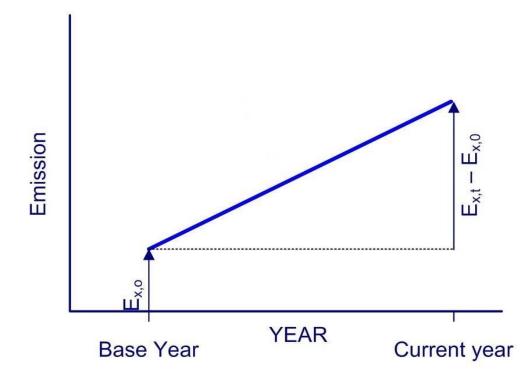
			Emission/ Removal	Absolute
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO ₂	10000	10000
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO ₂	200	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO_2	1300	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO ₂	123	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502
3A2	Manure Management	CH_4	543	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345
3B1b	Land Converted to Forest Land	CO ₂	879	879
I				20802

20892

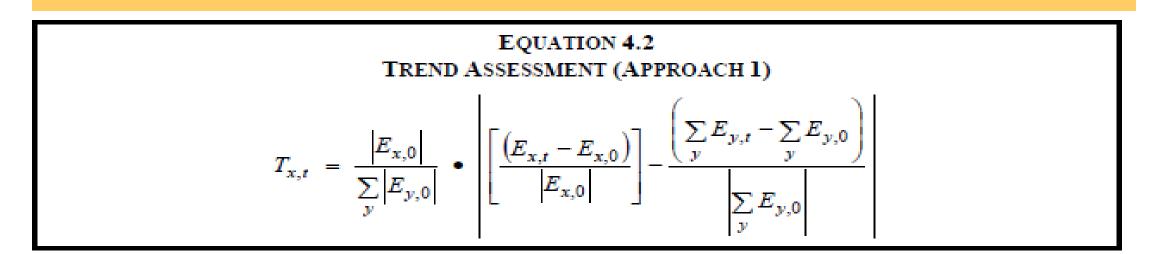
			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO_2	10000	10000	47.9%
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO_2	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO ₂	1300	1300	6.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO ₂	123	123	0.6%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO_2	5502	5502	26.3%
3A2	Manure Management	CH_4	543	543	2.6%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879 20892	4.2%

Example of Level Assessment

			Emission/ Removal	Absolute	Level	Cumulative
1A1	Fuel Combustion Activities - Energy Industries: Solid	CO ₂	10000	10000	47.9%	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%	74.2%
3B1a	Forest Land Remaining Forest Land	CO_2	-2345	2345	11.2%	85.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Solid	CO ₂	1300	1300	6.2%	91.6%
3B1b	Land Converted to Forest Land	CO_2	879	879	4.2%	95.8%
3A2	Manure Management	CH ₄	543	543	2.6%	98.4%
1A1	Fuel Combustion Activities - Energy Industries: Liquid	CO ₂	200	200	1.0%	99.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction: Gas	CO ₂	123	123	0.6%	100.0%
<u>``</u>				20892		



- The trend assessment identifies categories whose trend is different from the trend of the total inventory, regardless whether category trend is increasing or decreasing, or is a sink or source.
- Categories whose trend diverges most from the total trend should be identified as key, when this difference is weighted by the level of emissions or removals of the category in the base year.



IIN 🏵

Approach 1: Trend Assessment

Approach 1: Trend Assessment is used to identify smaller key categories that may not be large enough to be identified by the level assessment, but whose trend has a significant influence on the trend of the overall inventory. The 2006 IPCC Guidelines provide the following formula:

 $T_{x,t}$ = trend assessment of source or sink category x in year t as compared to the base year (year 0) $|E_{x,0}|$ = absolute value of emission or removal estimate of source or sink category x in year 0 $E_{x,t}$ and $E_{x,0}$ = real values of estimates of source or sink category x in years t and 0, respectively $\sum_{y} E_{y,t}$ and $\sum_{y} E_{y,0}$ = total inventory estimates in years t and 0, respectively

KCA - Approach 1 – Trend Assessment – Step by Step

- 1. Calculate the change of category emissions between the two years
- 2. Calculate **the change in total emissions** between the two years
- 3. Calculate trend assessment
- 4. Calculate **contribution** to the trend
- **5. Repeat Steps 1-4 for all source and sink categories** and estimate the individual contributions to the trend.
 - Once you have all individual contributions , then the remaining steps are similar to the Level assessment, where
- 6. Rank sources according to their contribution to the trend
- 7. Calculate cumulative contributions
- **8. Identify sources contributing to 95% of the trend**. These sources are Key categories according to the Trend Assessment.

IPCC Category Code	IPCC Category	Greenhouse Gas	E _{x,0} (Gg CO ₂ eq)	E _{x,t} (Gg CO ₂ eq)	Trend assessment T _{x,t}	% Contribu- tion to Trend	Cumulative Total of Column G	
1A1	Energy Industries: Solid	CO ₂	9 279	17 311	0.086	0.194	0.194	
1A1	Energy Industries: Peat	CO ₂	3 972	9 047	0.060	0.135	0.329	
1A1	Energy Industries: Gas	CO ₂	2 659	6 580	0.048	0.107	0.436	
1A4	Other Sectors: Liquid	CO ₂	6 714	5 651	0.035	0.078	0.514	
1A2	Manufacturing Industries and Construction: Solid	CO ₂	6 410	5 416	0.033	0.074	0.588	
4A	Solid Waste Disposal	CH ₄	3 678	2 497	0.028	0.062	0.650	
3C4	Direct N ₂ O Emissions from Managed Soils	N ₂ O	3 513	2 619	0.023	0.052	0.702	
1A3b	Road Transportation	CO ₂	10 800	11 447	0.023	0.051	0.752	
1A2	Manufacturing Industries and Construction: Liquid	CO ₂	4 861	4 736	0.016	0.036	0.788	
3A1	Enteric Fermentation	CH ₄	1 868	1 537	0.010	0.023	0.811	
2F1	Refrigeration and Air Conditioning	HFCs, PFCs	0	578	0.008	0.018	0.830	
2 B 2	Nitric Acid Production	N ₂ O	1 595	1 396	0.008	0.017	0.846	
3C2	Liming	CO ₂	618	277	0.007	0.015	0.861	
2A1	Cement Production	CO ₂	786	500	0.006	0.014	0.876	
1A2	Manufacturing Industries and Construction: Peat	CO ₂	1 561	1 498	0.005	0.012	0.888	
1A2	Manufacturing Industries and Construction: Gas	CO ₂	2 094	2 174	0.005	0.011	0.899	
1A3b	Road Transportation	N ₂ O	160	516	0.005	0.010	0.909	
3C5	Indirect N ₂ O Emissions from Managed Soils	N ₂ O	735	592	0.004	0.009	0.919	
3A2	Manure Management	N ₂ O	623	461	0.004	0.009	0.928	
1A5	Non-Specified: Liquid	CO ₂	734	1 083	0.003	0.006	0.934	
3C1	Biomass Burning	CO ₂	180	91	0.002	0.004	0.938	
1A3e	Other Transportation	CO ₂	644	651	0.002	0.004	0.942	
1A4	Other Sectors: Gas	CO ₂	98	225	0.001	0.003	0.946	
1A3c	Railways	CO ₂	191	134	0.001	0.003	0.949	
1A5	Non-Specified: Gas	CO ₂	222	363	0.001	0.003	0.952	

70 692

85 352

0.445

1

Key

FICAT

environment programme

copenhagen climate centre

Total

programme

copenhagen climate centre

environment

programme

gef

Qualitative Criteria Analysis

Mitigation techniques and technologies	 If category may be subject to mitigation activities (e.g. NDC)
Expected growth	 A category may become key soon (e.g. for many years, F gases fell into this category for annex I countries.)
No quantitative assessment of uncertainties performed	 Categories may have significant uncertainty, even when approach 2 not performed.
Completeness	 The quantitative KCA may not accurately reflect circumstances if not all categories are estimated. Could look at other similar countries to determine possible key categories.
t copenhagen	

- *Key categories* are extremely important:
 - Mistakes will lead to significant under-/over- estimates
 - Improvements will significantly improve overall inventory quality
- Higher tiers (Tier 2 and Tier 3) should be used for estimating key categories
- Resources of national inventory compilers are (in many cases)
 limited → focus on key categories

Reporting requirements for uncertainty analysis in national **FIC**AGHG inventories under the ETF

Parties shall...

- submit 1st BTR at the latest 31 December 2024 (<u>18/CMA.1</u>) Least developed country Parties and small island developing States may submit at their discretion.
- Use the 2006 IPCC Guidelines uncertainty estimates are an essential element of a complete inventory of GHG emissions and removals. They should be derived for both the national level and the trend estimate, as well as for the component parts such as emission factors, activity data and other estimation parameters for each category.
- quantitatively estimate uncertainty and qualitatively discuss uncertainty for emission, removal estimates for all categories, including inventory totals for at least the starting year and latest year of the inventory time series.
- also estimate the trend uncertainty use at least approach 1.
- Flexibility for developing countries Parties that need it in the light of their capacity, provide, at a minimum, a qualitative discussion of uncertainty for key categories where quantitative input data are unavailable to quantitatively estimate uncertainties and encourage to provide quantitative estimate of uncertainty.

UN 🏟

Reporting requirements for uncertainty analysis in national **FICAT** GHG inventories under the ETF

Parties shall...

- Time series
 - o report consistent time series from 1990 (with flexibility)
 - report latest reporting year T-2 (T-3 with flexibility)
- report recalculations for starting year and all subsequent years of time series together with justification and impact of recalculations
- identify key category for the starting year and the latest reporting year including and excluding LULUCF categories, using approach 1, for both level and trend assessment (with flexibility)
- report on institutional arrangements (e.g., planning, preparation and management) – uncertainty data collection, academia, statistics office
- develop a QA/QC plan (with flexibility)
- report basket of 7 gases CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, NF3 (with flexibility), using AR5 GWP values (<u>IPCC WGI AR5 Chapter08,</u> <u>Table 8.A.1</u>)

KCA Exercise

Which of the following statements are True or False?

- According to the 2006 IPCC Guidelines, key category is prioritised within an inventory because its emissions or removals have a significant influence on the total GHG inventory, in terms of absolute level, the total trend, or uncertainty in emissions and removals.
- 2. According to the 2006 IPCC Guidelines, qualitative assessment should only be performed based on expert judgement.
- 3. The sole purpose of a key category analysis is to determine whether the IPCC default emissions factors can be used to estimate emissions from specific categories
- 4. When you perform a key category analysis, for each activity that emits more than one GHG there is no need to specify a separate category for each gas.

Select which of the following can be used as qualitative criteria for Approach 3.

- a) Technological advancements leading to reductions in GHG emissions from specific categories
- b) Expected large decreases in the uncertainty of a category based on the findings of a peer-viewed article
- c) Results of the key categories analysis from the GHG inventory of a neighbouring country with similar circumstances

KCA Exercise

Arrange the following steps, from 1 to 6, to correspond to the Approach 1 – Level Assessment.

- Add up the % contribution of categories until you reach 95% of total emissions
- Estimate emissions and removals from all known activities using tier 1 methods
- Arrange all categories in descending order (based on % contribution)
- Convert removals into 'emissions'
- Calculate % contribution of each category to totals 'emissions'
- Calculate total emissions

KCA Exercise Answers

Which of the following statements are True or False?

- 1. According to the 2006 IPCC Guidelines, key category is prioritised within an inventory because its emissions or removals have a significant influence on the total GHG inventory, in terms of absolute level, the total trend, or uncertainty in emissions and removals. True
- 2. According to the 2006 IPCC Guidelines, qualitative assessment should only be performed based on expert judgement. False
- 3. The sole purpose of a key category analysis is to determine whether the IPCC default emissions factors can be used to estimate emissions from specific categories. False
- 4. When you perform a key category analysis, for each activity that emits more than one GHG there is no need to specify a separate category for each gas. False

Select which of the following can be used as qualitative criteria for Approach 3.

- a) Technological advancements leading to reductions in GHG emissions from specific categories
- b) Expected large decreases in the uncertainty of a category based on the findings of a peer-viewed article
- c) Results of the key categories analysis from the GHG inventory of a neighbouring country with similar circumstances

All three can be used.

6

5

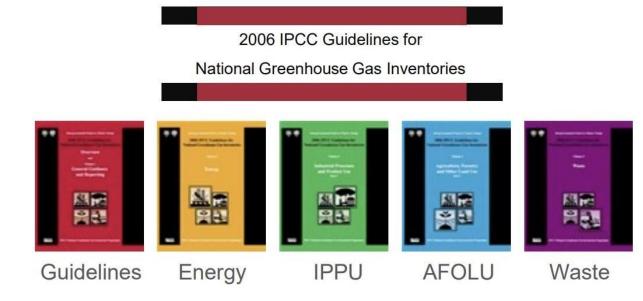
2

4

KCA Exercise Answer

Arrange the following steps, from 1 to 6, to correspond to the Approach 1 – Level Assessment.

- Add up the % contribution of categories until you reach 95% of total emissions
- Estimate emissions and removals from all known activities using tier 1 methods
- Arrange all categories in descending order (based on % contribution)
- Convert removals into 'emissions'
- Calculate % contribution of each category to totals 'emissions'
- Calculate total emissions



Uncertainty Overview

Vol. 1 - Ch. 3: uncertainty Vol. 1 - Ch. 4: KCA based on uncertainty Vol. 1 - Ch. 5: Splicing techniques

Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories

- Chapter 1 Introduction
- Chapter 2 Energy
- Chapter 3 Industrial Processes
- Chapter 4 Agriculture
- Chapter 5 Waste
- Chapter 6 Quantifying Uncertainties in Practice
- Chapter 7 Methodological Choice and Recalculation
- Chapter 8 Quality Assurance and Quality Control

General approach

Uncertainty

Lack of knowledge of the true value of a variable that can be described as a probability density function (PDF). Uncertainty depends on the analyst's state of knowledge, which in turn depends on the quality and quantity of applicable data as well as knowledge of underlying processes and inference methods.

Uncertainty analysis

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to reduce the uncertainty of inventories in the future, and guide decisions on methodological choice. Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions and removals estimates for individual categories and for the total inventory

Uncertainty assessment

The term "ASSESSMENT" is intended to convey an exercise that includes the investigation of quantitative and qualitative aspects. In the glossary to the Guidelines, "uncertainty analysis" is defined as only a quantitative exercise.

Key concepts

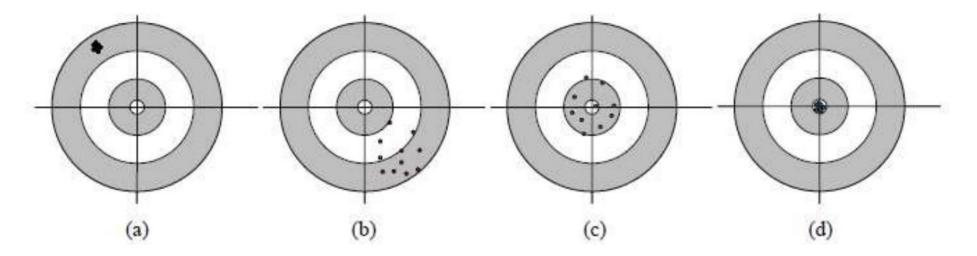
Confidence interval: range that encloses the true, but unknown value, with a determined confidence (probability). Typically, a 95 percent confidence interval is used in greenhouse gas inventories.

Alternative interpretation: Range that may safely be declared to be consistent with observed data or information

Probability Density Function (PDF): describes the range and relative likelihood of possible values.

For emission inventory, it is used to describe uncertainty in the estimate of a quantity that is a fixed constant whose value is not exactly known.

Sensitivity analysis: method to determine which of the input uncertainties to an inventory contributes most substantially to the overall uncertainty.



Lack of knowledge of the true value

How far is the true value from the value used?

Accuracy (systematic errors or bias) vs. Precision (random errors)

(a) inaccurate but precise; (b) inaccurate and imprecise; (c) accurate but imprecise; and (d) precise and accurate

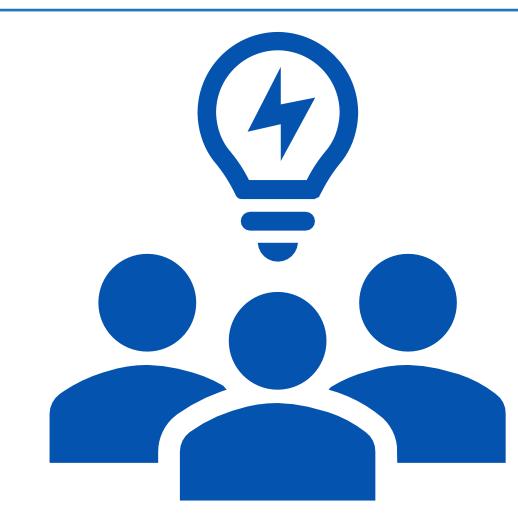
Linear Error Propagation (LEP) **Data Calculated using Enter Emissions Data** simple equations TABLE 3.2 **APPROACH 1 UNCERTAINTY CALCULATION** A B C E F G H J K L Μ I Uncertainty in trend IPCC Gas Base yea Year t Activity Emission Combined Contribution Type A Type B Uncertainty in trend Uncertainty emissions or in national emissions emissions data factor / uncertainty to Variance sensitivity sensitivity in national emissions introduced into category in roduced by or removals removals uncertainty estimation by Category introduced by activity the trend in total emission factor / in Year t data uncertainty national parameter estimation parameter uncertainty emissions uncertainty Input data Input data Input data Input data Note B I•F $K^2 + L^2$ $(G \bullet D)^2$ $\sqrt{E^2 + F^2}$ D $J \bullet E \bullet \sqrt{2}$ Note A Note A ΣC Note C $(\Sigma D)^2$ Note D Gg CO₂ Gg CO₂ % % % % % % % % equivalent equivalent E.g., 1.A.1. CO_2 Energy Industries Fuel 1 E.g., CO_2 1.A.1. Energy Industries Fuel 2 Etc... ΣC ΣD ΣH ΣM Total Percentage uncertainty in $\sqrt{\Sigma H}$ $\sqrt{\sum M}$ Trend uncertainty: total inventory:

Approach 1 uncertainty calculation									-			
A	В	С	D	E	F	G	Н	I	J	K	L	М
IPCC category	Gas	Base year	Year t emissions	Activity data	Emission factor /	Combined	Contribution to	Type A	Type B	Uncertainty in	Uncertainty in	Uncertainty
	0.0800-	emissions or	or removals	uncertainty	estimation	uncertainty	Variance by	sensitivity		trend in national	trend in national	introduced into
		removals			parameter		Category in		-			the trend in total
									national emissions			
AD uncertainties based									emissions			
on source of dat	ta							0	n data	usea		
on source of dat	la											
	_											
		Input data	Input data	Input data	Input data	$\sqrt{E^2+F^2}$	$\frac{(\mathbf{G} \bullet \mathbf{D})^2}{(\mathbf{J})^2}$	Note B	$\frac{D}{\Sigma C}$	I•F	J∙E•√2	$K^2 + L^2$
		6 60	6 60			VE + F	$(\Sigma D)^2$		12 C 1	1•r	J•E•√2	K~+L~
		Gg CO ₂ equivalent	Gg CO ₂ equivalent	%	%	%		%	%	%	%	%
	0114		1 (A)	5	25	25.50	0.0	3.20506E-05	0.00010495	0.000801264	0.000742109	1.19275E-06
1.A.1. Energy Industries	CH4			5	25		0.0	4.80131E-05	0.000165011	0.001200328	0.001166804	2.80222E-06
1.A.2. Manufacturing Industries and Construction			51.8776096	5	25	25.50 25.50	0.0	-4.94664E-05	0.000183011	-0.001200328	0.0001166804	2.22736E-06
1.A.3. Transport	CH4 CH4		37.1466612	5	25	25.50	0.0	-0.000772946		-0.019323647	0.009638828	0.00046631
1.A.4. Other Sectors 1.A.5. Other	CH4 CH4	Table and the second second second	428.554682 97.5658895	5	25	25.50	0.0	-0.000367351	0.000310335	-0.009183772	0.002194401	8.91571E-05
1.B.1. Solid Fuels	CH4 CH4	24867.6834	12364.38	10	25	26.93	2.7	-0.011678579	0.039328314	-0.291964463	0.556186352	0.394586505
1.B.2. Oil and Natural Gas	CH4 CH4	12570.348	4022.34735	10	25	26.93	0.3	-0.012988732		-0.324718297	0.180937071	0.138180196
2.B. Chemical Industry .	CH4	40.53	37.5018	10	25	26.93	0.0	3.61373E-05	0.000119285	0.000903433	0.001686942	3.66196E-06
4.A. Enteric Fermentation.	CH4	14054.9863	7346.85	15	30	33.54	1.5	-0.005462727	0.023368679	-0.163881819	0.495724537	0.272600067
4.B. Manure Management.	CH4	1903.28061	1199.63088	15	30	33.54	0.0	-8.88245E-05	0.003815756	-0.002664735	0.080944413	0.006559099
4.C. Rice Cultivation.	CH4	522.9	338.94	10	30	31.62	0.0	5.3609E-06	0.001078092	0.000160827	0.015246523	0.000232482
4.F. Field Burning of Agricultural Residues.	CH4	64.3314	000.04			6	0.0	-1.24107E-05	0.000119565	-0.000372321	0.003381819	1.15753E-05
6.A. Solid Waste Disposal on Land.	CH4	1959.72	37:	ist of s	ource/s	sinke 4	0.4	0.00787088	0.011891742	0.236126385	0.252261939	0.119391756
6.B. Wastewater Handling.	CH4	787.08	72	151 01 5	ourcers		0.0	0.000761896	0.002376612	0.022856865	0.050415547	0.003064164
1.A.1. Energy Industries	CO2		9596			17	11.2	0.094441853	0.305249301	0.472209267	2.158438506	4.881838378
1.A.2. Manufacturing Industries and Construction			30164		5	7.07	1.1	0.02618491	0.095945987	0.130924551	0.678440577	0.477422855
1.A.3. Transport	CO2		0706.48	5	5	7.07	0.1	-0.022453294	0.026739124	-0.11226647	0.189074157	0.048352797
1.A.4. Other Sectors	CO2		11784.04	5	5	7.07	0.2	-0.053800014	0.037482383	-0.269000072	0.265040472	0.14260749
1.A.5. Other	CO2		4124.19	5	5	7.07	0.0	-0.004052209	0.013118122	-0.020261045	0.092759127	0.009014766
1.B.2. Oil and Natural Gas	CO2	3408.21	5171.49583	10	15	18.03	0.2	0.009456387	0.016449366	0.141845811	0.232629165	0.074236563
2.A. Mineral Products.	CO2	5744.63	2507.20146	10	15	18.03	0.0	-0.003809586	0.007974844	-0.057143788	0.112781331	0.015985041
2.B. Chemical Industry .	CO2	1355.56	171.93456	10	15	18.03	0.0	-0.002233954	0.000546885	-0.033509311	0.007734125	0.001182691
2.C. Metal Production.	CO2	12932.6799	10507.4715	10	15	18.03	0.9	0.006887639	0.033421905	0.103314586	0.47265712	0.234078657
5.A. Changes in Forest and Other Woody Bioma	CO2	97.19		50	80	94.34	0.0	-0.000199385	0	-0.015950798	0	0.000254428
5.A. Changes in Forest and Other Woody Bioma	CO2	-7810.79	-7721.7341	50	80	94.34	12.9	-0.008539362	0.024561101	-0.683148991	1.736732102	3.482930938
5.B. Forest and Grassland Conversion.	CO2	6.26	280.43888	25	75	79.06	0.0	0.00087917	0.000892013	0.065937785	0.031537424	0.005342401
1.A.1. Energy Industries	N20		328.741673	5	50	50.25	0.0	0.000248607	0.001045653	0.012430334	0.007393886	0.000209183
1.A.2. Manufacturing Industries and Construction			114.844426	5	50	50.25	0.0	0.000134069	0.000365294	0.006703468	0.002583021	5.16085E-05
1.A.3. Transport	N20		21.6195922	5	50	50.25	0.0	-4.88495E-05	6.87671E-05	-0.002442474	0.000486257	6.20212E-06
1.A.4. Other Sectors	N20		46.1816455	5	50	50.25	0.0	-0.000252117	0.000146893	-0.01260587	0.001038693	0.000159987
1.A.5. Other	N20			5	50	50.25	0.0	-1.3288E-05	4.30025E-05	-0.000664398	0.000304074	5.33886E-07
4.B. Manure Management.	N20		198.4	15	30	33.54	0.0	-0.000138451	0.000631066	-0.004153541	0.013386927	0.000196462
4.D. Agricultural Soils(2).	N20		9798.17	20	30	36.06	3.0	-0.020551916	0.031165777	-0.616557485	0.881501284	1.157187646
4.F. Field Burning of Agricultural Residues.	N20		21.297	20	30	36.06	0.0	1.78812E-05		0.000536437	0.001916004	3.95884E-06
6.B. Wastewater Handling.	N20	452.6	384.4	15	30	33.54	0.0	0.000294175	0.00122269	0.008825264	0.025937172	0.000750622
Keep Blank!	••••	214200 7/24	202221 1212			- 17				0	- 14	11 4/20044
Total		314388.7626	202771.1719	1	r	ΣH	34.6				∑M Trend	11.4670044
					Percentage uncert inventory:	ainty in total	5.880740472				uncertainty:	3.386296561

FICAT

environment programme climate centre

Uncertainty assessment


- It is a means to help prioritise national efforts to reduce the uncertainty of inventories in the future
- It guides decisions on methodological choice
- It helps understand the quality of the information use
- It is a requirement of GHG Inventories

Assessment of uncertainty in the input parameters should be part of the data collection

