

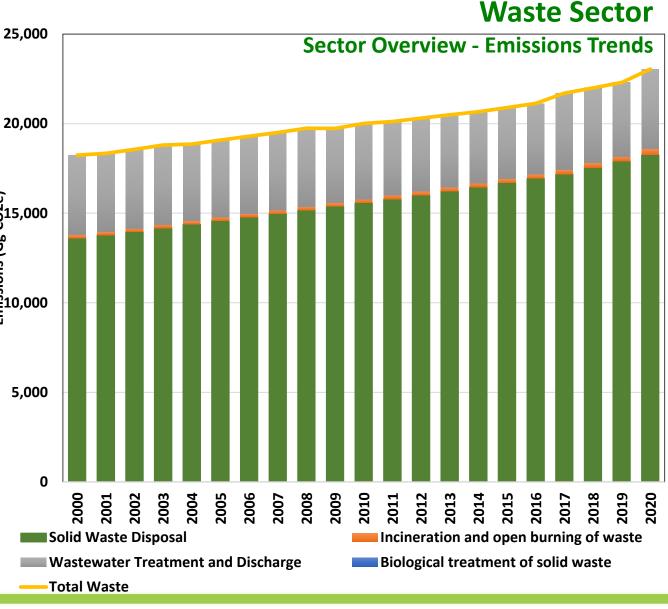
Waste Sector

Quality Assurance of the National Greenhouse Gas Inventory Management System and National Greenhouse Gas Inventories of South Africa

Presented By: Tshamaano Khalushi March 2024

Table of Contents

- 2020 Inventory Overview
- 4A Solid Waste Disposal Activities
- 4B Biological Treatment of Solid Waste
- 4C Waste Incineration & Open-burning of Waste
- 4D Wastewater Treatment & Discharge



Overview of 2020 Emissions for the Waste Sector

- Total 2020 *Waste* sector emissions were 23 046 $Gg CO_2 e. 4.9 \% ex FOLU$ Main contributor \rightarrow *Solid Waste Disposal* at •
- ٠ Solid Waste Disposal at 79.2 %.
- Followed by • Wastewater Treatment & Discharge at 19.3 %
- Waste emissions ٠ increased by 26 % since 2000

REPUBLIC OF SOUTH AFRICA

Waste sector

Sector Overview: Completeness

- 4A Solid waste disposal;
 - CH₄ emissions from Managed Solid Waste Disposal Sites
- 4B Biological Treatment of Solid Waste, CH₄ and N₂O emissions from:
 - from Composting (New Source)
 - Anaerobic Digestion at Biogas Facilities (New Source)
- 4C Open burning of waste; and
- 4D Wastewater treatment and discharge, CH₄ and indirect N₂O emissions from treatment of wastewater.
 - Domestic Wastewater treatment and discharge.
 - Industrial Wastewater treatment and discharge (*New Source*)

NE, IE or NO	IPCC Category	Activity	Comments
NE	4C1	CO_2 , CH_4 and N_2O from waste incineration	Insufficient data to include

Waste sector

Sector Overview: Key Categories

IPCC Code	Category	GHG	Identification Criteria
4A	Solid waste disposal	CH ₄	L,T
4D	Wastewater treatment & discharge	CH ₄	L

Sector Overview: Recalculations & Improvements

Various improvements were incorporated into the Waste sector:

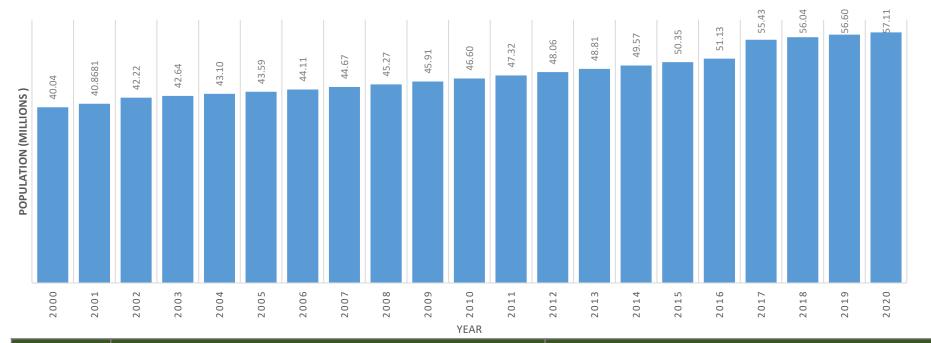
- Waste generation rate per person was adjusted from 578 kg/cap/yr in previous submissions to 398 kg/cap/yr.
- Waste generation rate per GDP value, for purposes of estimating the amount of industrial waste generated was adjusted from 8 Gg waste/GDP/yr in previous submissions to 0.4 waste/GDP/yr in the current submission.
- Amount sent to SWDS adjusted to 76% for MSW and 85% for Industrial waste to reflect changes in penetration of recycling and the evolution of other forms of waste management and/or treatment.

SECTOR SPECIFIC ASPECTS: WASTE SECTOR – 4A - SOLID WASTE DISPOSAL

Solid Waste Disposal		
Year	Emissions (Gg	
	CO ₂ e)	
2000	13 610.5	
2001	13 782.7	
2002	13 965.2	
2003	14 175.1	
2004	14 379.1	
2005	14 579.6	
2006	14 778.3	
2007	14 976.3	
2008	15 175.3	
2009	15 376.6	
2010	15 581.4	
2011	15 791.9	
2012	16 008.4	
2013	16 230.9	
2014	16 462.4	
2015	16 698.7	
2016	16 939.0	
2017	17 183.9	
2018	17 551.8	
2019	17 908.7	
2020	18 252.8	

Solid Waste Disposal – Overview

- Solid waste disposal produced 18 253 Gg CO_2e in 2020, which was all from CH_4 emissions.
- It contributed 79.2% to the total *Waste* sector emissions.
- Emissions increased by 34.1% from 2000
 2020
- The main driver of this increase is the population numbers.



forestry, fisheries & the environment

Department: Forestry, Fisheries and the Environment **REPUBLIC OF SOUTH AFRICA**

Sector Specific aspects- Waste Sector (Solid Waste Disposal – Data Sources: Activity Data)

Sub- category	Activity data	Data source
Solid	Population data	Statistics SA (2015); UN (2012)
waste	Waste composition	IPCC 2006, and 2019 IPCC Refinement
disposal	GDP	World bank

Solid Waste Disposal – Factors Used

Factor	Sub-category	Value	Unit
	Bulk MSW	0.2	Weight
DOC (degradable organic carbon)	Industrial waste	0.15	fraction (wet
	Sludge waste	0.05	basis)
DOCf (fraction of DOC dissimilated)		0.05	Fraction
	Bulk MSW	0.05	
Methane generation rate constant	Industrial waste	0.05	Years ⁻¹
	Sewage sludge	0.06	
	Unmanaged, shallow	0.4	
	Unmanaged, deep	0.8	
Methane correction factor (MCF)	Managed	1	Unitless
	Managed, semi-aerobic	0.5	
	Uncategorized	0.6	
Fraction of methane in generated landfill gas (F)		0.5	Fraction
Oxidation factor (OF)		0	Unitless

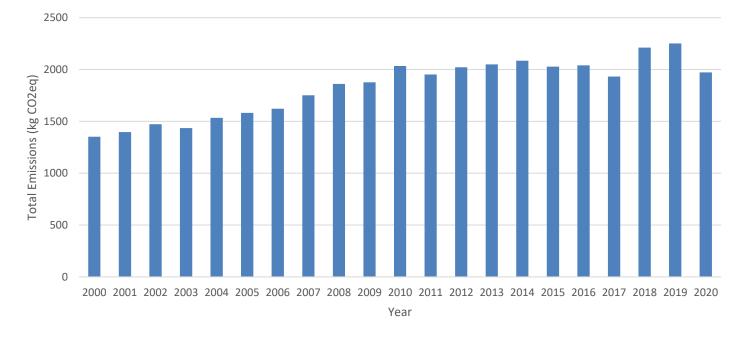
Solid Waste Disposal – Key Assumptions

The key assumptions applied in this method were:

- percentage of MSW going into landfills was assumed to be constant (76%) throughout the time series 2000 – 2020
- percentage of Industrial Solid Waste going into landfills was assumed to be constant (85%) throughout the time series 2000 – 2020
- Composition of waste going into SWDS was assumed to be 24 % food, 0% garden, 14.5% paper, 0% wood, 5,5% textile, 0% nappies and 56% plastic or other inert substance (default IPCC Regional values – 2019 Refinement)
- waste generation rate per GDP (Gg/\$m GDP/yr) was assumed to be constant (0,4 tonnes/per unit of GDP in US dollar) throughout the time series).

Sector Specific aspects- Waste Sector Solid Waste Disposal – Planned Improvements

- (i) Obtain data on the quantities of waste disposed of into managed and unmanaged landfills including its composition;
- (ii) Improve the classification of landfill sites
- (iii)Improve the reporting of economic data (e.g. annual growth) to include different population groups. The assumption that GDP growth is evenly distributed (using a computed mean) across all the population groups is highly misleading, and leads to exacerbated margins of error;
- (iv)Obtain information on population distribution trends between rural and urban settlements as a function of income; and
- (v) Conduct a study to trace waste streams and obtain more information on the bucket system which is still widely used in South Africa.
- (vi)Collect data on CH_4 recovery at SWDS based on metering data.



SECTOR SPECIFIC ASPECTS: WASTE SECTOR 4B - BIOLOGICAL TREATMENT OF SOLID WASTE

Sector Specific aspects- Waste Sector Biological Treatment of Solid Waste – Overview

- *Biological Treatment of Solid Waste* produced 0.002 Gg CO₂e in 2020.
- This includes CH_4 emissions from both and only N_2O from composting.
- This sub-category is considered insignificant.

Sector Specific aspects- Waste Sector

Biological Treatment of Solid Waste – Data Sources: Activity Data

Period	Biological Treatment System	Waste Treated (Gg)	•
2000		2677	
2001		2781	
2002		2955	
2003		2866	•
2004		3096	
2005		3215	
2006		3333	
2007		3622	
2008		3957	
2009	Composting	3803	
2010	composing	4052	
2011		4156	
2012		4315	
2013		4386	
2014		4409	
2015		4335	
2016		4357	
2017		4099	
2018		4741	
2019		4842	

- Data from Sanitation Waste Pathways study
 - Composting
 - Anaerobic digestion
- For composting only includes Industrial Solid Waste from:
 - Meat & poultry
 - Plastics & Resins
 - Organic chemicals
 - Soap & detergents
 - Starch production
 - Vegetable oils
 - Vegetables, fruits & juices

forestry, fisheries & the environment

Department: Forestry, Fisheries and the Environment REPUBLIC OF SOUTH AFRICA

Sector Specific aspects- Waste Sector Biological Treatment of Solid Waste – Data Sources: Activity Data

Period	Biological Treatment System	Waste Treated (Gg)	CH₄ Recovered
2000		5662	10.75759
2001		5732	10.88992
2002		5838	11.09145
2003		5808	11.03606
2004		5923	11.25376
2005		5888	11.18803
2006		5729	10.88481
2007		5980	11.36284
2008	Anaerobic	5415	10.28811
2009	digestion at	7118	13.52474
2010	biogas	8324	15.81632
2011	facilities	5631	10.69833
2012		5726	10.87883
2013		5691	10.81221
2014		6260	11.89394
2015		5698	10.82596
2016		5753	10.93055
2017		5683	10.79762
2018		6078	11.54978
2019		6054	11.50436

- For anaerobic digestion only Industrial Solid Waste from:
 - Meat & poultry
 - Beer & malt
 - Dairy
 - Petroleum refining
 - Hazardous waste

forestry, fisheries & the environment Department: Forestry, Fisheries and the Environment

REPUBLIC OF SOUTH AFRICA

Sector Specific aspects- Waste Sector Biological Treatment of Solid Waste – Factors Used

	CH ₄ Emission Factors (g CH ₄ /kg waste treated)	N ₂ O Emission Factors (g N ₂ O/kg waste treated)
Composting	10	0.6
Anaerobic Digestion at Biogas Facilities	2	Assumed negligible

Biological Treatment of Solid Waste – Context & Assumptions

- Only emissions from biological treatment of Industrial Solid Waste have been taken into account.
- Biological treatment of Municipal Solid Waste is excluded.
- As more data is collected on the amount of MSW that undergoes biological treatment, this will be included in the inventory.

SECTOR SPECIFIC ASPECTS: WASTE SECTOR 4C - INCINERATION & OPEN BURNING OF WASTE

Incineration and open burning of waste		
Year	Emissions (Gg CO2e)	
2000	176.1	
2001	179.7	
2002	185.7	
2003	187.5	
2004	189.5	
2005	191.7	
2006	194.0	
2007	196.4	
2008	199.1	
2009	201.9	
2010	205.0	
2011	208.1	
2012	211.4	
2013	214.7	
2014	218.0	
2015	221.4	
2016	224.9	
2017	250.7	
2018	254.1	
2019	257.5	
2020	334.9	

Sector Specific aspects- Waste Sector Incineration & Open Burning of Waste – Overview

- Open burning produced 335 Gg CO_2e in 2020.
- This is 1.5 % of total Waste Sector Emissions
- Emissions were 10.4% CO₂ (35 Gg CO₂e), 66.8%
 CH₄ (223 Gg CO₂e) and 22.8% N₂O (76 Gg CO₂e).
- Emissions in this category increased by 90.2% (159 Gg CO₂e) between 2000 and 2020.

forestry, fisheries & the environment

REPUBLIC OF SOUTH AFRICA

Sector Specific aspects- Waste Sector Incineration & Open Burning of Waste- Data Sources: Activity Data

Sub-category	Activity data	Data source
	Population data	Statistics SA (2015);
		UN (2012)
Open burning of waste	Fraction of population burning	Assumption based on
	waste	population without access to
		waste collection services

Only open burning currently considered in this sub-category

Sector Specific aspects- Waste Sector

Incineration & Open Burning of Waste- Factors Used

		Incineration &	Open Dunn
Sub-category	Value	Unit	Source
Dry matter content			
Food	0.4		
Garden	0.4		
Paper	0.9		
Wood	0.85	fraction	IPCC 2006
Textile	0.8		
Nappies	0.4		
Plastics, other inert	0.9		
Fraction of carbon in dry matter	0.0		
Food	0.38		
Garden	0.49		
Paper	0.46		
Wood	0.5	fraction	IPCC 2006
Textile	0.5		
Nappies	0.7		
Plastics, other inert	0.03		
Fraction of fossil C in total carbon			
Fraction of rossil c in total carbon Food	0		
Garden	0		
Paper	0.01		
Wood	0	fraction	IPCC 2006
Textile	0.2		
Nappies	0.1		
Plastics, other inert	1.0		
Oxidation factor	0.58	fraction	IPCC 2006
CH₄ emission factor	6500	g/t MSW	IPCC 2006
N ₂ O emission factor	150	G N ₂ O/t waste	IPCC 2006

forestry, fisheries & the environment

Department: Forestry, Fisheries and the Environment **REPUBLIC OF SOUTH AFRICA**

Sector Specific aspects- Waste Sector Incineration & Open Burning of Waste – Key Assumptions

In South Africa open burning of waste is considered in two cases,

- Where population do not have access to formal waste collection services. It is assumed that this portion of the population burn its waste openly.
- Small percentage of formal landfill sites who practice open burning as a means to manage waste volumes at SWDS.
- The fraction of population carrying out open-burning was estimated at 9% (Expert Judgement).

Incineration & Open Burning of Waste – Planned Improvements

Collection of activity data on amounts of waste incinerated, by category of waste and the technologies used to incinerate waste in South Africa.

SECTOR SPECIFIC ASPECTS: WASTE SECTOR 4D – WASTEWATER TREATMENT & DISCHARGE

Wastewater Treatment and Discharge		
Year	Emissions (Gg CO ₂ e)	
2000	4 454.6	
2001	4 381.2	
2002	4 415.5	
2003	4 440.5	
2004	4 290.2	
2005	4 314.2	
2006	4 323.6	
2007	4 329.0	
2008	4 367.7	
2009	4 153.7	
2010	4 220.7	
2011	4 114.0	
2012	4 087.2	
2013	4 045.6	
2014	3 980.0	
2015	3 976.2	
2016	3 959.5	
2017	4 264.7	
2018	4 183.2	
2019	4 133.1	
2020	4 458.1	

Sector Specific aspects- Waste Sector Wastewater Treatment & Discharge – Overview

- Wastewater treatment and discharge contributed 4 458 Gg CO₂e.
- This was 19.3 % of total Waste Sector emissions
- The contribution from *Wastewater treatment and discharge* has remained stable throughout the time series.
- This is largely due to similar increases and decreases in Domestic and Industrial wastewater emissions.

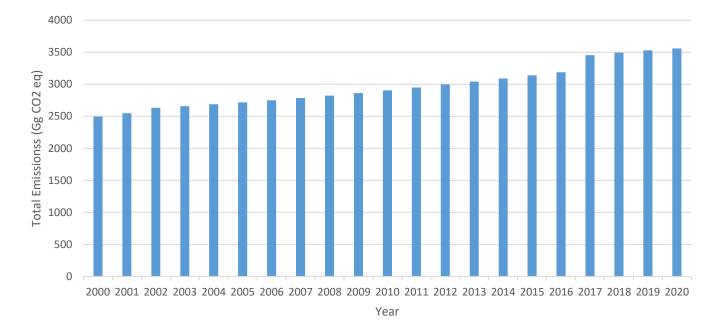
forestry, fisheries & the environment Department: Forestry, Fisheries and the Environment

REPUBLIC OF SOUTH AFRICA

NDP

Sector Specific aspects- Waste Sector Wastewater Treatment & Discharge – Data Sources: Activity Data

Sub-category	Activity data	Data source	
	Population data	Statistics SA (2015);	
		UN (2012)	
	Split of population by income	Statistics SA (2015)	
Wastewater treatment and	group		
discharge	BOD generation rates per	IPCC 2006	
	treatment type		
	Per capita nitrogen generation	IPCC 2006	
	rate		



SUB-SECTOR SPECIFIC ASPECTS: WASTE SECTOR 4D1 – DOMESTIC WASTEWATER TREATMENT & DISCHARGE

Sector Specific aspects- Waste Sector Domestic Wastewater Treatment & Discharge – Overview

- *Domestic Wastewater treatment* produced 3 561 Gg CO₂e
- This is 80 % of total Wastewater Treatment & Discharge emissions
- Emissions from *Domestic wastewater treatment* increased by 42.6% between 2000 2020

Sector Specific aspects- Waste Sector

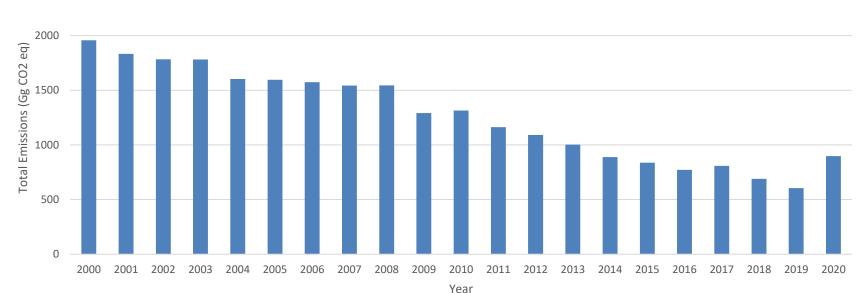
Domestic Wastewater Treatment & Discharge- Factors Used

Turne of two streams or discharge	Maximum CH ₄ producing capacity (BOD)	CH ₄ correction factor for each treatment system	Emission factor
Type of treatment or discharge	(kg CH₄/kg BOD)	(MCF)	(kg CH₄/kg BOD)
Septic system	0.6	0.5	0.30
Latrine – rural	0.6 0.1		0.06
Latrine – urban low income	0.6	0.5	0.30
Stagnant sewer (open and warm)	0.6	0.6 0.5	
Flowing sewer	0.6	0.0	0.00
Other	0.6	0.1	0.06
None	0.6	0.0	0.00

Sector Specific aspects- Waste Sector

Domestic Wastewater Treatment & Discharge- Factors Used

Income group	Fraction of population income group	Type of treatment or discharge pathway	Degree of utilization
		(kg CH₄/kg BOD)	(Тіј)
Rural	0.39	Septic tank	0.10
		Latrine – rural	0.28
		Sewer stagnant	0.10
		Other	0.04
		None	0.48
Urban high-income	0.12	Sewer closed	0.70
		Septic tank	0.15
		Other	0.15
Urban low-income	0.49	Latrine – urban low income	0.24
		Septic tank	0.17
		Sewer (open and warm)	0.34
		Sewer (flowing)	0.20
		Other	0.05


SUB-SECTOR SPECIFIC ASPECTS: WASTE SECTOR 4D2 – INDUSTRIAL WASTEWATER TREATMENT & DISCHARGE

Sector Specific aspects- Waste Sector

Industrial Wastewater Treatment & Discharge – Overview

- Emissions from industrial wastewater treatment and discharge were 897 Gg CO₂e in 2020.
- CH₄ from industrial wastewater treatment in 2020 are 54.2% lower than the level of 2000.
- The trend in emissions in this source category is highly dependent on changes in output in various sectors of industry.

2500

Sector Specific aspects- Waste Sector

Industrial Wastewater Treatment & Discharge – Context & Key Assumptions

- Emissions of methane from wastewater and their sludge generated in treatment systems were taken into account.
- A waste improvement study implemented in the year 2019, collected actual AD for the period 2000-2017 for all the sectors of wastewater and biological solid waste, as well as a forecasting model for 2018-2035 for industrial wastewater.
- The input AD were quantities of production per sector for the period; wastewater generated per production tonne; COD concentration in wastewater for the period 2000 2017 this activity data was then extrapolated to cover the entire time series.
- CH₄ recovery was not considered due to lack of information on projects for the collection and utilization of methane in facilities for the treatment of industrial wastewater.

Domestic Wastewater Treatment & Discharge – Planned Improvements

- Continue collecting more detailed data on the applied technologies of wastewater treatment in various industries via the mandatory GHG reporting regime.
- Continue on the analysis and assessment of the data reported through mandatory GHG reporting regime to enhance the accuracy of the emissions from this category.

THANK YOU!

Climate Change Monitoring Evaluation and Mitigation GHG Inventory & Systems

Department of Forestry, Fisheries and the Environment Tel: 012 399 9195 | Mobile: 074 581 5391 Website: <u>http://www.dffe.gov.za</u> GHGreporting@dffe.gov.za hank You

Address: The Environment House, 473 Steve Biko Road, Arcadia, Pretoria, 0083

