



**United Nations** Climate Change

#### Approaches to identify and report support needed



Federico A. Canu Financial Advisor UNEP Copenhagen Climate Centre federico.canu@un.org

> environment programme climate centre





#### Why map support needed

For your own national planning and climate finance strategy, as it is the result of an assessment of available national resources and needed support to ensure implementation To identify existing barriers for investments and potentially unlock private and international financial flows towards low carbon development

To attract financial support, lowering the cost of financing, potentially enhancing ambition and cover the incremental cost of climate action

#### Financial support – NDC costing (and benefits)



You cannot communicate financial support needs without an overview of costs.

- Map costs / investment needs for the NDC, action by action
- Translate policies and programmes into activity data and assign costs to the activities (e.g. number of PV systems, type of early warning system, trees to be planted, number of rangers for forest protection etc. )
- Identify technology and capacity needs and estimate costs of technical assistance

#### Financial support – Estimate revenue streams / savings

Climate action is not only costs. Many actions will generate revenues or lead to savings (e.g. electricity sales / savings, reduced damage from flooding etc.)

- For each costed action identify revenue streams / savings to identify the cost/revenues expected from each action
- Compare Costs and Benefits
- Costs should include the cost of financing

| fficient residential air conditioner (1000 units) |                 |                 |           |                                                  |       |                 |  |  |  |  |  |  |
|---------------------------------------------------|-----------------|-----------------|-----------|--------------------------------------------------|-------|-----------------|--|--|--|--|--|--|
| Costs in                                          | Reduction       | Reference       | Increase  | General inputs:                                  |       |                 |  |  |  |  |  |  |
| US\$                                              | Option          | Option          | (RedRef.) | Discount rate                                    | 7%    |                 |  |  |  |  |  |  |
| Total investment                                  | 130,000         |                 |           | Average electricity price                        | 0.12  | US\$/kWh        |  |  |  |  |  |  |
| Project life                                      | 8               |                 |           | CO2-eq. emission coefficient                     | 0.80  | ton CO2-eq./MWh |  |  |  |  |  |  |
| Lev. investment                                   | 21,771          | 0               |           | Grid loss                                        | 18.6% |                 |  |  |  |  |  |  |
| Annual O&M                                        | 0               | 0               |           | <b>Reduction option: Efficient air condition</b> | ner   |                 |  |  |  |  |  |  |
| Annual electricity cost                           | 315,000         | 471,910         | -156,910  | 0&M                                              | 0%    | US\$            |  |  |  |  |  |  |
| Total annual cost                                 | 336,771         | 471,910         | -135,139  | Activity                                         | 1,000 | Air conditioner |  |  |  |  |  |  |
|                                                   |                 |                 |           | Lifetime                                         | 5     | yrs             |  |  |  |  |  |  |
| Annual emissions (tons)                           | Tons            | Tons            | Reduction | Extra cost for eff. air conditioner              | 130.0 | US\$            |  |  |  |  |  |  |
| Fuel CO2-eq. emission                             | 2,580           | 3,865           | 1,285     | Cooling capacity                                 | 2.50  | kW              |  |  |  |  |  |  |
| Other                                             |                 |                 |           | COP                                              | 4.00  |                 |  |  |  |  |  |  |
| Total CO2-eq. emission                            | 2,580           | 3,865           | 1,285     | Input power                                      | 0.63  | kW              |  |  |  |  |  |  |
|                                                   |                 |                 |           | Annual usage                                     | 4,200 | hrs             |  |  |  |  |  |  |
| US\$/ton CO2-eq.                                  |                 |                 | -105      | Annual electricity used                          | 2625  | MWh             |  |  |  |  |  |  |
|                                                   |                 |                 |           | Reference option: Conventional air conditioner   |       |                 |  |  |  |  |  |  |
| Notes:                                            |                 |                 |           | 0&M                                              | 1     | US\$            |  |  |  |  |  |  |
| COP=Coefficient Of Performance                    | e = cooling cap | acity divided b | ov input  | Activity                                         | 1000  | Air conditioner |  |  |  |  |  |  |
| power Most airconditioner have                    | input power     | of 9000 Btu/hr  | (995W) or | Cooling capacity                                 | 2.50  | kW              |  |  |  |  |  |  |
| 12000 Btu/hr (1120 W) Conventi                    | ional COP fror  | n PWC Energy    | Audit     | COP                                              | 2.67  |                 |  |  |  |  |  |  |
| Efficient COP from most used eff                  | icient air cond | ditioner        |           | Input power                                      | 0.94  | kW              |  |  |  |  |  |  |
|                                                   |                 |                 |           | Daily usage                                      | 14    | Hours/day       |  |  |  |  |  |  |
|                                                   |                 |                 |           | Days used                                        | 300   | Days/year       |  |  |  |  |  |  |
|                                                   |                 |                 |           | Annual usage                                     | 4,200 | hrs             |  |  |  |  |  |  |
|                                                   |                 |                 |           | Annual electricity used                          | 3933  | MWh             |  |  |  |  |  |  |
|                                                   |                 |                 |           |                                                  |       |                 |  |  |  |  |  |  |
|                                                   |                 |                 |           | Electricity saved 1 unit                         | 1308  | MWh             |  |  |  |  |  |  |
|                                                   |                 |                 |           | Electricity saved compared to reference          | 0     | Saving          |  |  |  |  |  |  |

| MW Biomass power      | from biomas | s residues - 2 | 025       |                                    |            |             |
|-----------------------|-------------|----------------|-----------|------------------------------------|------------|-------------|
| sts in                | Reduction   | Reference      | Increase  | General inputs:                    |            |             |
| \$                    | Option      | Option         | (RedRef.) | Discount rate                      | 7%         |             |
| tal investment        | 1,489,720   | 1              |           | Reference electricity price        | 0.12       | US\$/kWh    |
| oject life            | 20          |                |           | CO2-eq. emission coefficient       | 0.80       | tCO2/MW     |
| v. investment         | 140,619     |                | 140,619   |                                    |            |             |
| nual O&M              | 59,589      |                | 59,58     | Reduction option: Biomass residues | power plar | nt          |
| nual fuelcost         | 169,541     | 600,000        | -430,459  | 0&M                                | 4.0%       |             |
| tal annual cost       | 369,749     | 600,000        | -230,25   | Activity                           | 1          | MW          |
|                       |             |                |           | Investment in Activity             | 1489.7     | Million US  |
| nual emissions (tons) | Tons        | Tons           | Reduction | Capacity factor                    | 5000       | Full time h |
| el CO2-eq. emission   |             | 4,000          | 4,000     | Electricity production             | 5000       | MWh/ yea    |
| her                   |             |                |           | Calorific value of biomass         | 13.0       | GJ/t        |
| tal CO2-eq. emission  | 0           | 4,000          | 4,00      | El. efficiency of power plant      | 30.0%      |             |
|                       |             |                |           | Specific use of biomass            | 0.93       | ton biomas  |
| \$/ton CO2-eq.        |             |                | -57.6     | Use of biomass                     | 4626       | ton/year    |
|                       |             |                |           | Price of biomass                   | 36.6       | \$/ton      |
| otes:                 |             |                |           | Cost of electricity produced       | 0.337      | US\$/kWh    |
|                       |             |                |           |                                    |            |             |
|                       |             |                |           | Reference option: No Biomass power | r          |             |
|                       |             |                |           |                                    |            |             |
|                       |             |                |           |                                    | 1          |             |



#### Assess which actions have incremental cost



#### **Assess national sources of finance**



Climate action operates seldom in a vacuum and is usually part of the general development of a country

- Estimate available sources of finance for each action (relates to unconditional component, if relevant)
  - Public programmes, infrastructure and interventions National financial resources allocated, the national budget
  - Private sector investments

Market trends, costs of technology and assumptions for future developments

 National sources of finance should be subtracted from needed amounts

### **Assess financial / investment barriers**

#### E.g.:

- High cost of capital (e.g. interest rates)
- Risk profile of investments (e.g. currency exchange)
- Long term nature of investments and pay-back
- Expected IRR for investors in local context
- Level of indebtedness



 High interest rates or collateral requirements for energy efficiency projects due to risk analysis difficulties.

### **Identify appropriate financial instruments**



| Instruments                 | Description                                                                                                                                                                                                                                                                                       |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grant                       | Transfers made in cash, goods, or services for which no repayment is required.                                                                                                                                                                                                                    |
| Concessional<br>Ioan        | These are loans that are extended on terms substantially more generous than market loans. The concessionality is achieved either through interest rates below those available on the market or by grace periods, or a combination of these. Concessional loans typically have long grace periods. |
| Market loan                 | A marketing loan is a variation of the non- recourse loan whereby, for specified commodities, a producer may repay a loan at a lower rate than the loan rate, equivalent to the prevailing world market price.                                                                                    |
| Lines of credit             | Credit is an amount for which there is a specific obligation of repayment. Credits include loans, trade credits,<br>bonds, bills, etc., and other agreements which give rise to specific obligations to repay over a period of time<br>usually, but not always, with interest.                    |
| Risk or credit<br>guarantee | Commitment by an export credit agency to reimburse a lender if the borrower fails to repay a loan. The lender pays a guarantee fee.                                                                                                                                                               |
| Equity                      | Equity refers to the value of the interest of an owner or partial owner in an asset.                                                                                                                                                                                                              |

### **Identify** appropriate financial instruments

 Consider the most effective instrument to achieve the desired outcome (remove identified barriers)



### Identify appropriate financial instruments

- Consider the most effective instrument to achieve the desired outcome (remove identified barriers)
- Grants are usually not provided for investments, but can be applied for technical assistance, preparatory activities and potentially investments in pilots
- Debt finance is usually used to cover CAPEX and concessional finance (support) is an effective instrument to improve the overall attractiveness of the investment
- Guarantees ensuring expected revenues are realised or losses by investors prevented are effective at lowering financing costs without the need for upfront disbursements
- Financial support dedicated for O&M unrealistic
- Adaptation more likely to receive grants than mitigation



|                        | Activities                                            | Estimated cost | Month start | Month finish |
|------------------------|-------------------------------------------------------|----------------|-------------|--------------|
|                        | Proposal preparation                                  |                |             |              |
| P1                     | Permits                                               | 15,000         | 1           | 12           |
| P2                     | Technical analysis                                    | 15,000         | 1           | 24           |
| P3                     | Consultancy contracts                                 | 15,000         | 1           | 24           |
|                        | Subtotal                                              | 45,000         |             |              |
|                        | Construction & pre-operation                          |                |             |              |
| C1                     | Land acquisition                                      | 240,000        | 6           | 12           |
| C2                     | Engineering                                           | 110,000        | 6           | 12           |
| C3                     | Machinery 1                                           | 2,381          | 6           | 12           |
| C4                     | Machinery 2                                           | 200,000        | 13          | 24           |
| C5                     | Machinery 3                                           | 111,000        | 13          | 24           |
| C6                     | Machinery 4                                           | 22,333         | 13          | 24           |
| C7                     | Testing 1                                             | 300,000        | 25          | 36           |
| C8                     | Testing 2                                             | 33,334         | 25          | 36           |
| C9                     | Interest payment during construction                  | 50,952         | 6           | 36           |
|                        | Total                                                 | 1,070,000      |             |              |
|                        | Operation Phase                                       |                |             |              |
|                        | Revenue                                               |                |             |              |
| R1                     | Revenue                                               | Table 4        | 37          | 216          |
|                        | Operating costs                                       |                |             |              |
| p, <b>91</b> 20: Finan | ce Galacyor Implementation of Technology Action Plans | Table 5        | 37          | 216          |
| 02                     | Rent                                                  | Table 5        | 37          | 216          |
| 03                     | Communication                                         | Table 5        | 37          | 216          |
| 04                     | Fuels                                                 | Table 5        | 37          | 216          |
| 05                     | General & administration                              | Table 5        | 37          | 216          |

#### **Technology and capacity support needed**

- Identify technology and capacity constraints
- Assign monetary value to support needed and incorporate in financial support needed
- Cross-reference between financial and technology and capacity support needed



Identify national sources of finance available and gaps to achieve implementation

Identify financial barriers for implementation and appropriate financial instruments

Assign monetary value to technology and capacity support needed and include in financial support

#### Take home points

Map costs AND benefits





**United Nations** Climate Change

## Thank you for your attention!



Federico A. Canu Financial Advisor UNEP Copenhagen Climate Centre federico.canu@un.org



copenhagen climate centre





#### **Excercise**

- 1. Read the example of a fictive NDC action (policy/programme),
- 2. Estimate total investment costs and revenue streams for the Policy /programme
- 3. Estimate financial support needed
  - a. Indicate financial instrument
  - b. Indicate amount
  - c. Indicate use
- 4. Input the information in the BTR reporting table
- 5. Communicate back to plenary on challenges and considerations regarding to the topics of the presentation (availability in own country of data for Cost-benefit analysis, financial barriers, challenges in identifying appropriate financial instruments and amounts etc.)



## Exercise

Support Needed

## 1. NDC action example

The Kingdom of Arrakis is a committed to reduce emissions derived from Melange mining used for energy purposes. The country has ample solar resources and has included a solar PV programme as part of its NDC to the UNFCCC. Implementation is foreseen to happen between 2023 and 2033 to cover all households, but could be implemented within the next 5 years if enough financial support is provided. In case implementation is to be made within the next NDC cycle, technology development and transfer and capacity building support will be needed, in order to ensure capacity to deliver components and enough technicians to install equipment.



# 2. Cost of technology and needed

### investments

New technology costs

Baseline energy costs

- Financial analysis shows that the technology makes a good investment case, but why aren't households and SMEs investing in the technology.
- Total potential 1 million units for a total investment cost of 750.000.000 USD

| Solar house PVs, 500 V        | V       |            |              |           |                                |       |                 |
|-------------------------------|---------|------------|--------------|-----------|--------------------------------|-------|-----------------|
| Costs in                      | Reduc   | tion R     | eference     | Increase  | General inputs:                |       |                 |
| US\$                          | Optior  | ח O        | ption        | (RedRef.) | Discount rate                  | 7%    |                 |
| Fotal investment              |         | 750.0      |              |           | Reference electricity price    | 0.12  | US\$/kWh        |
| Project life                  |         | 20.0       |              |           | CO2-eq. emission coefficient   | 0.80  | tCO2/MWh        |
| _ev. investment               |         | 70.8       | /            | 70.8      |                                |       |                 |
| Annual O&M                    |         | 7.5        | ¥            | 7.5       | Activity: Solar PV             |       |                 |
| Annual fuelcost               |         |            | 98.6         | -98.6     | Size of solar PV               | 0.5   | kW              |
| Fotal annual cost             |         | 78.3       | 98.6         | -20.3     | Size of PV                     | 3.7   | m2              |
|                               |         |            |              |           | Investment in Activity         | 1500  | US\$/kW         |
| Annual emissions (tons)       | Tons    | Т          | ons          | Reduction | Daily insolation               | 5     | hours           |
| uel CO2-eq. emission          |         |            | 0.66         | 0.66      | Annual capacity factor         | 1825  | Full time hours |
| Other                         |         |            |              |           | Efficiency factor              | 0.9   |                 |
| Fotal CO2-eq. emission        |         | 0.00       | 0.66         | 0.66      | 0&M                            | 1.0%  | Of investment   |
|                               |         |            |              | 1         | Electricity production         | 0.821 | MWh             |
| JS\$/ton CO2-eq.              |         |            |              | -30.8     | Cost of electricity produced   | 0.095 | US\$/kWh        |
|                               |         |            |              |           |                                |       |                 |
| Notes:                        |         |            |              |           | Reference option: No solar PVs |       |                 |
| This calculation for an urbar | nhouse  | is made fo | or a country | with an   | Electricity production         | 0.821 | MWh             |
| avarage daily insolation of 5 | hours.  | 6.0.5      |              |           |                                |       |                 |
| 3 KW of solar PV will need a  | root ar | ea of 20 m | 12.          |           |                                |       |                 |

Emission reductions

## 3. Government contribution

- The government has dedicated 10.000.000 USD
- The total potential is 1.000.000 million units, the government still wishes to achieve full implementation unconditionally by 2033, but seeks support to achieve implementation in the next 5 years.

# 4. Cost of technology and needed investments

- The barrier analysis shows that the main target group households have limited financial resources.
- Local banks can provide loans, but the high interest rates make the investment unattractive.



#### 5. Answer the questions

- What are the total investment costs for the programme?
- What will be the government contribution?
- What is the difference?
- What other financial instruments could the government use?
- What financial instruments could be requested as financial support to address the identified financial barriers in a cost-effective manner?
- What amount would you consider to request as support?
- What financial instrument would you apply for to address the technology and capacity barriers?

#### 6. Fill in the BTR table

 Try to also fill in the tabs for technology and capacity support received



#### 7. Communicate back to plenary

- Challenges and considerations related to the topics of the presentation
  - How many different approaches were there to potential financial instruments and quantification of amount of support needed?
    - What were the main challenges?
  - What are the challenges in your own country related to:
    - Availability of data for Cost-benefit analysis
    - Identification of financial barriers,
    - Challenges in identifying appropriate financial instruments and amounts
    - Other central challenges etc.
  - Challenges related to identifying financial vs technology and capacity support and putting a price tag on them?

# Follow up on Exercise

Support Needed

#### Answer to the questions

- 1. What are the total investment costs for the programme?
- 2. What will be the government contribution?
- 3. What is the difference?
- 4. What other financial instruments could the government use?

750.000.000 USD

10.000.000 USD

740.000.000 (should the government buy and install)

Households will achieve benefits (savings) and should invest

- Partial grants on technology, or
- Feed-in-tariff (not to facilitate initial investment, but makes the business case more attractive)
- Tax credit e.g. on import of equipment (facilitate initial investment)
- Guarantees to national private banks
- Finance green credit lines through the national development bank

#### Answer to the questions

- 5. What financial instruments could be requested as financial support to address the identified financial barriers in a cost-effective manner?
- 6. What amount would you consider to request as support?

- Grants (how much investments can grants unlock?)
- Concessional loans to be channeled through national financial institutions
- Guarantees on loans from national financial institutions to lower interest rates

- Grant, you need the full amount, but unrealistic
- If support is channeled through loans to national financial institutions or guarantees, they could be expected to provide the largest part of the amount and the requested amount would be smaller than the 740.000.000
- Here grants can be easily justified for training and capacity building purposes

7. What financial instrument

#### Communicate back to plenary

- Challenges and considerations related to the topics of the presentation
  - How many different approaches were there to potential financial instruments and quantification of amount of support needed?
    - What were the main challenges?
  - What are the challenges in your own country related to:
    - Availability of data for Cost-benefit analysis
    - Identification of financial barriers,
    - Challenges in identifying appropriate financial instruments and amounts
    - Other central challenges etc.
  - Challenges related to identifying financial vs technology and capacity support and putting a price tag on them?

GACMO - a tool that provides a selection of mitigation actions including assumed costs and calculates potential revenues (and GHG scenarios)

# What is GACMO

- Model GACMO = Greenhouse gas Abatement Cost Model
- Bottom-up modelling tool for greenhouse gas emissions based on Excel
- IPCC / CDM Methodologies
- Developed by Jørgen Fenhann at UNEP CCC
- Available for free on the UNEP CCC website <u>The Greenhouse Gas</u> <u>Abatement Cost Model (GACMO) – UNEP-CCC (unepccc.org)</u>

#### GACMO is a simple tool

You do not have much time to prepare your NDC, you therefore need a simple tool.

The tool should be able to make Business As Usual (BAU) projection to:2025/2030/2035/2050

GACMO can make a NDC with a reduction of a percentage reduction of the GHG emission compared to the BAU.

The tool should be able to calculate the GHG reduction and the cost for each mitigation option compared to the technology used in the baseline.

The tool should be able to scale the size of the mitigations option up and down.

The tool should give a clear overview of the total mitigation effort: total GHG reduction, total investment, and total annual cost.

The calculation should be transparent and easy to follow.

#### Use of GACMO

The first version of GACMO was developed 25 years ago for Zimbabwe by Jorgen Fenhann

GACMO has been used by several countries to make an analysis of the GHG mitigation options for their country to be used in the National Communication: Colombia, Makedonia, Albania, Ghana, Sao Tome and Principe, etc.

GACMO has been used to make Low Carbon Development Strategies, e.g. by the Maldives

GACMO has been used by some countries to make their NDCs: e.g. Eritrea, Afghanistan, Maldives, Djibouti, Sri Lanka, Myanmar, etc.

GACMO has been used in regional low carbon studies: "Zero Carbon Latin America, A Pathway for Net Decarbonisation of the Regional Economy by mid-century". We have now with UNEP in Panama and Walter Vergara updated this study for the transport and power sectors in Chile.

#### GACMO is a simple tool

We are trying to make our GACMO model able to follow these rule:

- 1. The model start with an energy balance for the start year (e.g. 2015) in mass units (tonnes and m3) or in energy units (ktoe or GJ). We often use an OECD like energy balance which we can get from ENERDATA.
- 2. The projection for the BAU to 2025/2030/2035/2050 is made quick and dirty by using an annual growth factor for each sector, which are then transformed into factors bringing the BAU value forward to the future.
- 3. The energy balances for the start year are changed to GHG balances by multiplying with IPCC default factors.
- 4. An excel sheet is prepared for each mitigation option, and added together in the "Main" sheet.
- 5. A mitigation revenue curve is made.
- 6. The resulting NDC is simple to compare with other countries.

#### GACMO contains different sheets: Start year balance, growth, assumptions, main, technologies

|          | • ⇔ • ¢ •                          | ^₽⊊ 🗟 🗳 🕞                                        | -                                          |                                                    |                                          | GACM                                      | 10 (6).xlsm - 1                | ixcel                         |                                 |                   |               |                   | 困                                | - (                 |                   |
|----------|------------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|-------------------------------|---------------------------------|-------------------|---------------|-------------------|----------------------------------|---------------------|-------------------|
| File     | Home                               | Insert Page Layou                                | t Formulas [                               | Data Review V                                      | iew Develope                             | er ACROBAT                                | ♀ Tell me w                    | nat you want to               | do                              |                   |               | ∑ AutoSu          | Denis [                          | OR Desgain          | $\beta_{+}$ Share |
| Paste    | ਨ Cut<br>ोa Copy →<br>ダ Format Pai | Helv Helv                                        | • 10 • A A A                               |                                                    | Wrap Text                                | Custom                                    | •<br>• • 0.00<br>• • 00.   • • | Conditional F<br>Formatting ▼ | ormat as Cell<br>Table • Styles | Insert Del        | ete Format    | Fill •<br>Clear • | Sort & Find 8<br>Filter • Select | e<br>v              |                   |
| C        | lipboard                           | Fa For                                           | it 🕞                                       | Aligr                                              | nment                                    | lis Nu                                    | imber 5                        | S                             | tyles                           | Ce                | lls           |                   | Editing                          |                     | ^                 |
| S35      | *                                  | $\times \checkmark f_x$                          |                                            |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     | ^                 |
|          |                                    |                                                  |                                            |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
|          |                                    | A                                                |                                            | ВС                                                 | D                                        | E F                                       | G                              | Н                             | I J                             | К                 | L             | М                 | N O                              | P                   | Q F 🔺             |
| 1        |                                    |                                                  |                                            |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
| 3        | V                                  | Nelcome to the Gre                               | eenhouse gas A                             | batement Cost M                                    | IOdel GACMO                              | , version of 19.                          | February 2                     | 020                           |                                 |                   |               |                   |                                  |                     |                   |
| 5        |                                    | 'he model was developed                          | l by Joergen Fenhan                        | n, UNEP DTU Partners                               | hip, e-mail jqfe@a                       | ltu.dk, mobile: +45                       | 4020 2789,                     |                               |                                 |                   |               |                   |                                  |                     |                   |
| 6<br>7   | G                                  | ACMO news: We have a                             | added macros so yo                         | u can click on a mitiga                            | ition option in a M                      | lain sheet and be tr                      | ansferred to th                | e table for that of           | otion.                          |                   |               |                   |                                  |                     |                   |
| 8        | G                                  | ACMO is utilised to mak                          | te an analysis of the                      | GHG mitigation option                              | ns for a country or                      | region to be used                         | in the National                | Communication, t              | he NDC or a Low                 | Carbon Develo     | pment Plan.   |                   |                                  |                     |                   |
| 10       | Ģ                                  | Seneral description                              | of how the mo                              | del works:                                         |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
| 12       | T<br>A                             | he outcome of the use o<br>batement Revenue Curv | of the GACMO Mode<br>ve. The input require | l is a table providing a<br>d for the model to run | in overview of the<br>n is a GHG balance | the cost and impace<br>for the country in | t of different m<br>question . | itigation initiative          | es, outputted in th             | ne format of a ta | ble and an    |                   |                                  |                     |                   |
| 14       |                                    | <i>W</i> ho can benefit                          | from using th                              | e model?                                           |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
| 16       | lf                                 | f your country has not do                        | one a Busines As Usu                       | ual (BAU) scenario to t                            | he desired future                        | year you could use                        | the first part of              | the GACMO mod                 | lel that calculates             | the BAU scenar    | io.           |                   |                                  |                     |                   |
| 18       | If                                 | f you country have not cr                        | alculated the mitiga                       | tion scenario you coul                             | d use the second p                       | part of the GACMO                         | model. You the                 | n skip the first pa           | rt and insert the t             | otal BAU GHG e    | missions at t | he                |                                  |                     |                   |
| 20       | b                                  | ottom of the desired "M                          | lain" sheet.                               |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
| 21<br>22 | If                                 | you have not done calc                           | ulation for all your d                     | lesired mitigation opti                            | on you could use t                       | the model to comp                         | ete your calcul                | ations.                       |                                 |                   |               |                   |                                  |                     |                   |
| 23<br>24 | L                                  | Jse of the model                                 | l:                                         |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     |                   |
| 25       | A                                  | Il cells in the worksheets                       | s where inputs are r                       | needed are yellow. Mo                              | ost of these cells o                     | ontain default valu                       | es, these can be               | modified where                | appropriate.                    |                   |               |                   |                                  |                     |                   |
| 27       | B                                  | elow a range of steps re                         | quired for the use o                       | f the model will be exp                            | plained. Text mark                       | ked with <mark>blue</mark> indica         | tes that the use               | r has to either in            | put data or perfo               | rm other actions  | in order for  | the               | $\sim$                           |                     |                   |
| 28       | Guid                               | ance kT to TJ                                    | Start Year Balan                           | ce Growth 0                                        | Country info                             | Balance 2025                              | Balance 2                      | 030 Balanc                    | e 2050 ass                      | umptions          | graph   m     | ain25 m           | ain30 / main50                   | MRV                 | • (+) :           |
| Ready    | •                                  | _                                                | $\sim$                                     |                                                    |                                          |                                           |                                |                               |                                 |                   |               |                   |                                  |                     | + 80%             |
|          | <u>ک</u> (                         | _ı <mark>e</mark> 🥽                              | <i>e</i> 🤇                                 | oĭ w]                                              | ×I                                       | P                                         |                                |                               |                                 |                   |               | ^ 🧉               | <b>;</b> •                       | , 10:57<br>30-03-20 | 20                |

## Assumpti

ons

|      |                                                                                        |                |            |            |            | 0110                         | /                  |                                                  |                           |               |                             |                                             |                    |            |          |
|------|----------------------------------------------------------------------------------------|----------------|------------|------------|------------|------------------------------|--------------------|--------------------------------------------------|---------------------------|---------------|-----------------------------|---------------------------------------------|--------------------|------------|----------|
| l.   | 🖬 🕤 • 🐡 🗳 🗳 🗳 🖡 🔹                                                                      |                |            |            |            | GACMO (6).xlsm               | - Excel            |                                                  |                           |               |                             |                                             | T                  | - 0        | $\times$ |
| F    | ile Home Insert Page Layout Form                                                       | nulas Data Re  | eview View | v Develop  | er ACRO    | BAT 🗘 Tell me                | what you w         | vant to do                                       |                           |               |                             |                                             | Denis DR           | Desgain 💡  | Share    |
| Pas  | Cut<br>Copy →<br>te<br>Clipboard<br>K Cut<br>Helv<br>V 10 →<br>B I U →<br>Font<br>Font |                | ≥ ≫ - E    | Wrap Text  | Center - C | Custom<br>• % • 50<br>Number | Conditi<br>Formatt | ≠<br>ional Format as<br>ting ▼ Table ▼<br>Styles | Cell Insert I<br>Styles • | Delete Format | ∑ Auto<br>↓ Fill ←<br>Clean | Sum • A<br>Z<br>Sort 8<br>Filter<br>Editing | Find &<br>Select + |            | ^        |
| A1   | 8 • : $\times \checkmark f_x$                                                          |                |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            | ^        |
|      | A                                                                                      | В              | С          | D          | Е          | F                            | G                  | Н                                                | 1                         | J             | к                           | L                                           | м                  | N          | -        |
| 1    | Assumptionst and Country settings                                                      |                |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 2    | Country:                                                                               | Country X      |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 3    | Start year (latest inventory):                                                         | 2015           |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 4    | Currency:                                                                              | Currency Y     |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 5    | Exchange rate used: 1 US\$=                                                            | 4              | Currency Y |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 6    | Discount rate =                                                                        | 7.0%           |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 7    |                                                                                        |                |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 8    | Energy prices used for the whole period                                                | :              |            | ,          |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 9    | Crude oil                                                                              | 60.0           | US\$/bbl   |            |            | 1 Million BTU =              | 1.055              | GJ                                               | _                         |               |                             |                                             |                    |            |          |
| 10   | Crude oil                                                                              | 0.38           | US\$/litre |            |            | 1 US gallon =                | 3.7854             | litres                                           | _                         |               |                             |                                             |                    |            |          |
| 11   | LNG<br>Natural see                                                                     | 3.3            | US\$/MBTU  |            |            | 1 bbi =                      | 159                | litres                                           |                           |               |                             |                                             |                    |            |          |
| 12   | Natural gas                                                                            | 3.1            | US\$/GJ    |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 14   | Coal                                                                                   | 100            | USANON     | ]          |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 15   | Fuel prices                                                                            |                |            |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 16   | 2020 prices                                                                            | LPG            | Gaso-      | Bioethanol | Jet        | Diesel                       | Biodiesel          | Heavy                                            | Kero-                     | Coal          | Coke                        | Petroleum                                   | Lignite            | Natural    |          |
| 17   |                                                                                        |                | line       |            | Fuel       | Oil                          |                    | Fuel Oil                                         | sene                      |               |                             | coke                                        | Ť                  | Gas        |          |
| 18   |                                                                                        | 0.90           | 1.40       |            | 1.40       | 1.20                         |                    | 0.80                                             | 1.40                      |               |                             |                                             |                    |            |          |
| 19   | US\$/liter                                                                             | 0.34           | 0.53       | 0.83       | 0.53       | 0.45                         | 1.20               | 0.30                                             | 0.53                      |               |                             |                                             |                    |            |          |
| 20   | US\$/GJ                                                                                | 13.3           | 15.7       |            | 14.8       | 12.4                         |                    | 7.7                                              | 14.8                      | 2.5           | 2.5                         | 2.5                                         |                    | 3.1        |          |
| 21   | t/m3                                                                                   | 0.54           | 0.75       | 0.76       | 0.80       | 0.84                         | 0.88               | 0.98                                             | 0.80                      | 05.0          |                             |                                             | 40.0               | (MJ/Nm3)   |          |
| 22   | GJ/t                                                                                   | 47.3           | 44.8       | 26.8       | 44.6       | 43.3                         | 26.8               | 40.2                                             | 44.8                      | 25.0          | 28.0                        | 31.0                                        | 18.3               | 39.0       |          |
| 23   | Electricit.                                                                            | loolated aride | Crid 1     | Crid 2     | 1          |                              |                    |                                                  |                           |               |                             |                                             |                    |            |          |
| 25   | US\$/kWb                                                                               | Isolaleu grids | 0.20       |            |            |                              |                    |                                                  |                           |               |                             |                                             |                    |            | -        |
|      | Guidance   kT to TJ   Start Ye                                                         | ar Balance Gr  | owth Cou   | untry info | Balance    | 2025 Balance                 | 2030               | Balance 2050                                     | assumptions               | graph r       | main25                      | main30 r                                    | nain50             | MRV (+)    |          |
| Read | dv 🛅                                                                                   |                |            |            |            |                              |                    |                                                  |                           |               |                             |                                             | _                  | + +        | 90%      |
|      | /                                                                                      |                |            |            |            |                              |                    |                                                  |                           |               | -                           |                                             |                    | 12:02      |          |
|      | -                                                                                      | 9              | w          | ×∃         | P          |                              |                    |                                                  |                           |               | $\wedge \bowtie$            |                                             | ¶⊒ (×              | 30-03-2020 |          |

#### Start Year Energy Balance for Country X

| Unit : ktCO2-e                            | Total    | LPG   | Gasoline | Jet Fuel | Diesel  | HFO     | Kerosene<br>and other | Total oil<br>products | Coal | Lignite | Natural Gas |
|-------------------------------------------|----------|-------|----------|----------|---------|---------|-----------------------|-----------------------|------|---------|-------------|
| Total                                     | 18,666.5 | 962.8 | 4,373.7  | 52.3     | 6,073.4 | 1,809.7 | 14.7                  | 13,286.6              | 0.0  | 0.0     | 5,379.9     |
| Fossil power plants                       | 6,187.8  | 113.4 | 0.0      | 0.0      | 36.0    | 1,634.6 | 0.0                   | 1,784.0               | 0.0  | 0.0     | 4,403.8     |
| FINAL CONSUMPTION                         | 12,478.6 | 849.4 | 4,373.7  | 52.3     | 6,037.4 | 175.1   | 14.7                  | 11,502.6              | 0.0  | 0.0     | 976.0       |
| Industry - steel                          | 22.7     | 2.4   | 0.0      | 0.0      | 3.8     | 16.6    | 0.0                   | 22.7                  | 0.0  | 0.0     | 0.0         |
| Industry - chemical                       | 5.4      | 0.0   | 0.0      | 0.0      | 2.5     | 2.9     | 0.0                   | 5.4                   | 0.0  | 0.0     | 0.0         |
| Industry - non metallic mineral           | 0.0      | 0.0   | 0.0      | 0.0      | 0.0     | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0         |
| Industry - food processing and beverage   | 149.4    | 61.6  | 0.0      | 0.0      | 7.7     | 80.1    | 0.0                   | 149.4                 | 0.0  | 0.0     | 0.0         |
| Industry - construction                   | 71.2     | 0.0   | 0.0      | 0.0      | 71.2    | 0.0     | 0.0                   | 71.2                  | 0.0  | 0.0     | 0.0         |
| Industry - mining                         | 917.5    | 0.0   | 0.0      | 0.0      | 917.5   | 0.0     | 0.0                   | 917.5                 | 0.0  | 0.0     | 0.0         |
| Industry - machinery                      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0     | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0         |
| Industry - non ferrous metals             | 0.0      | 0.0   | 0.0      | 0.0      | 0.0     | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0         |
| Industry - paper and pulp                 | 0.2      | 0.2   | 0.0      | 0.0      | 0.0     | 0.0     | 0.0                   | 0.2                   | 0.0  | 0.0     | 0.0         |
| Industry - transport equipment            | 3.4      | 0.0   | 0.0      | 0.0      | 3.4     | 0.0     | 0.0                   | 3.4                   | 0.0  | 0.0     | 0.0         |
| Industry - textile and leather            | 24.1     | 0.1   | 0.0      | 0.0      | 1.4     | 22.6    | 0.0                   | 24.1                  | 0.0  | 0.0     | 0.0         |
| Industry - miscellaneous                  | 187.5    | 0.9   | 0.0      | 0.0      | 9.5     | 3.7     | 0.0                   | 14.2                  | 0.0  | 0.0     | 173.3       |
| Transport - road                          | 8,969.3  | 166.4 | 4,233.9  | 0.0      | 4,569.0 | 0.0     | 0.0                   | 8,969.3               | 0.0  | 0.0     | 0.0         |
| Transport - rail                          | 2.8      | 0.0   | 0.0      | 0.0      | 2.8     | 0.0     | 0.0                   | 2.8                   | 0.0  | 0.0     | 0.0         |
| Transport - domestic air                  | 52.3     | 0.0   | 0.0      | 52.3     | 0.0     | 0.0     | 0.0                   | 52.3                  | 0.0  | 0.0     | 0.0         |
| Transport - navigation                    | 3.1      | 0.0   | 0.0      | 0.0      | 3.1     | 0.0     | 0.0                   | 3.1                   | 0.0  | 0.0     | 0.0         |
| Households                                | 575.6    | 564.1 | 0.0      | 0.0      | 0.0     | 0.0     | 11.4                  | 575.6                 | 0.0  | 0.0     | 0.0         |
| Services                                  | 53.7     | 53.7  | 0.0      | 0.0      | 0.0     | 0.0     | 0.0                   | 53.7                  | 0.0  | 0.0     | 0.0         |
| Agriculture & Fishery                     | 301.0    | 0.0   | 95.7     | 0.0      | 205.3   | 0.0     | 0.0                   | 301.0                 | 0.0  | 0.0     | 0.0         |
| Energy Industry - Refinery                | 73.4     | 0.0   | 0.0      | 0.0      | 0.0     | 49.1    | 0.0                   | 49.1                  | 0.0  | 0.0     | 24.3        |
| Energy Industry - Other energy industries | 1,066.0  | 0.0   | 44.0     | 0.0      | 240.2   | 0.0     | 3.3                   | 287.6                 | 0.0  | 0.0     | 778.4       |

| Start year:                             | 2015         |                |                |              |          |          |           |          |
|-----------------------------------------|--------------|----------------|----------------|--------------|----------|----------|-----------|----------|
| Growth from the start year              | An           | nual % increas | se in the peri | od           | % increa | ase from | start yea | r values |
| Growth and multiplication factors       | 2015 to 2020 | 2020 to 2025   | 2025 to 2030   | 2030 to 2050 | 2020     | 2025     | 2030      | 2050     |
| Population growth                       | 0.83%        | 0.83%          | 0.83%          | 0.50%        | 4%       | 9%       | 13%       | 25%      |
| GDP growth                              | 4.10%        | 4.10%          | 4.10%          | 3.00%        | 22%      | 49%      | 83%       | 230%     |
|                                         |              |                |                |              |          |          |           |          |
| Industry - fuel in steel                | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in chemical             | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in non metallic mineral | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in food and beverage    | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in construction         | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in mining               | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in machinery            | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in non ferrous metals   | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in paper and pulp       | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in transport equipment  | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in textile and leather  | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - fuel in miscellaneous        | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Industry - electricity consumption      | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Transport - fuel in road                | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Transport - fuel in rail                | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Transport - fuel in air                 | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Transport - fuel in navigation          | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Transport - electricity consumption     | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Households - LPG                        | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Households - Kerosene                   | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Households - electricity consumption    | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Services - fuel                         | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Services - electricity consumption      | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Agriculture - fuel                      | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Agriculture - electricity consumption   | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Non energy - fuel in chemical feedstocs | 6.0%         | 6.0%           | 6.0%           | 2.0%         | 34%      | 79%      | 140%      | 256%     |
| Livestock emissions                     | 3.0%         | 3.0%           | 3.0%           | 1.0%         | 16%      | 34%      | 56%       | 90%      |
| Rice emissions                          | 3.0%         | 3.0%           | 3.0%           | 1.0%         | 16%      | 34%      | 56%       | 90%      |
| N2O from agricultural soils             | 3.0%         | 3.0%           | 3.0%           | 1.0%         | 16%      | 34%      | 56%       | 90%      |
| Biomass burning                         | 3.0%         | 3.0%           | 3.0%           | 1.0%         | 16%      | 34%      | 56%       | 90%      |
| Forestry emission                       | 0.0%         | 0.0%           | 0.0%           | 0.0%         | 0%       | 0%       | 0%        | 0%       |
| Solid waste emissions                   | 0.0%         | 0.0%           | 0.0%           | 0.0%         | 0%       | 0%       | 0%        | 0%       |
| Liquid waste emissions                  | 0.0%         | 0.0%           | 0.0%           | 0.0%         | 0%       | 0%       | 0%        | 0%       |
| Industrial processes                    | 0.0%         | 0.0%           | 0.0%           | 0.0%         | 0%       | 0%       | 0%        | 0%       |

#### Example of the calculations in the GACMO model in the Country X

| Solar PVs, large grid,                             | 1 MW - 20       | 20            |           |                                |       |                 |
|----------------------------------------------------|-----------------|---------------|-----------|--------------------------------|-------|-----------------|
| Costs in                                           | Reduction       | Reference     | Increase  | General inputs:                |       |                 |
| US\$                                               | Option          | Option        | (RedRef.) | Discount rate                  | 10%   |                 |
| Total investment                                   | 1,500,000       |               |           | Reference electricity price    | 0.20  | US\$/kWh        |
| Project life                                       | 20              | )             |           | CO2-eq. emission coefficient   | 0.46  | tCO2/MWh        |
| Lev. investment                                    | 176,189         | )             | 176,189   |                                |       |                 |
| Annual O&M                                         | 15,000          |               | 15,000    | Activity: Solar PV             |       |                 |
| Annual fuelcost                                    |                 | 365,000       | -365,000  | Size of solar PV               | 1.0   | MW              |
| Total annual cost                                  | 191,189         | 365,000       | -173,811  | Investment in Activity         | 1500  | US\$/kW         |
|                                                    |                 |               |           | Daily insolation               | 5     | hours           |
| Annual emissions (tons)                            | Tons            | Tons          | Reduction | Annual capacity factor         | 1825  | Full time hours |
| Fuel CO2-eq. emission                              |                 | 840           | 840       | Efficiency factor              | 1     |                 |
| Other                                              |                 |               |           | 0&M                            | 1.0%  | Of investment   |
| Total CO2-eq. emission                             | 0               | 840           | 840       | Electricity production         | 1825  | MWh             |
|                                                    |                 |               |           | Cost of electricity produced   | 0.105 | US\$/kWh        |
| US\$/ton CO2-eq.                                   |                 |               | -207.0    |                                |       |                 |
|                                                    |                 |               |           | Reference option: No solar PVs |       |                 |
| Notes:                                             |                 |               |           | Electricity production         | 1825  | MWh             |
| This calculation is made fo insolation of 5 hours. | or a country wi | th an avarage | e daily   |                                |       |                 |

The GACMO model contain sheets like this for the each GHG reduction options

#### 2030 GHG Balance for Country X

| Unit : ktCO2-e                            | Total    | LPG     | Gasoline | Jet Fuel | Diesel   | Fueloil | Kerosene<br>and other | Total oil<br>products | Coal | Lignite | Gas      |
|-------------------------------------------|----------|---------|----------|----------|----------|---------|-----------------------|-----------------------|------|---------|----------|
| Total                                     | 33,700.2 | 1,805.0 | 7,030.7  | 137.6    | 10,456.1 | 3,587.0 | 9.0                   | 23,025.5              | 0.0  | 0.0     | 10,674.7 |
| Fossil power plants                       | 12,428.3 | 227.8   | 0.0      | 0.0      | 72.2     | 3,283.1 | 0.0                   | 3,583.2               | 0.0  | 0.0     | 8,845.2  |
| FINAL CONSUMPTION                         | 21,271.8 | 1,577.2 | 7,030.7  | 137.6    | 10,383.8 | 303.9   | 9.0                   | 19,442.3              | 0.0  | 0.0     | 1,829.5  |
| Industry - steel                          | 50.5     | 5.2     | 0.0      | 0.0      | 8.3      | 36.9    | 0.0                   | 50.5                  | 0.0  | 0.0     | 0.0      |
| Industry - chemical                       | 12.1     | 0.0     | 0.0      | 0.0      | 5.6      | 6.5     | 0.0                   | 12.1                  | 0.0  | 0.0     | 0.0      |
| Industry - non metallic mineral           | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0      |
| Industry - food processing and beverage   | 332.3    | 137.1   | 0.0      | 0.0      | 17.1     | 178.2   | 0.0                   | 332.3                 | 0.0  | 0.0     | 0.0      |
| Industry - construction                   | 158.4    | 0.0     | 0.0      | 0.0      | 158.4    | 0.0     | 0.0                   | 158.4                 | 0.0  | 0.0     | 0.0      |
| Industry - mining                         | 2,040.3  | 0.0     | 0.0      | 0.0      | 2,040.3  | 0.0     | 0.0                   | 2,040.3               | 0.0  | 0.0     | 0.0      |
| Industry - machinery                      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0      |
| Industry - non ferrous metals             | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0     | 0.0                   | 0.0                   | 0.0  | 0.0     | 0.0      |
| Industry - paper and pulp                 | 0.6      | 0.5     | 0.0      | 0.0      | 0.1      | 0.0     | 0.0                   | 0.6                   | 0.0  | 0.0     | 0.0      |
| Industry - transport equipment            | 7.6      | 0.0     | 0.0      | 0.0      | 7.6      | 0.0     | 0.0                   | 7.6                   | 0.0  | 0.0     | 0.0      |
| Industry - textile and leather            | 53.5     | 0.2     | 0.0      | 0.0      | 3.0      | 50.3    | 0.0                   | 53.5                  | 0.0  | 0.0     | 0.0      |
| Industry - miscellaneous                  | 417.0    | 2.0     | 0.0      | 0.0      | 21.2     | 8.3     | 0.0                   | 31.5                  | 0.0  | 0.0     | 385.5    |
| Transport - road                          | 14,395.0 | 267.0   | 6,795.1  | 0.0      | 7,332.9  | 0.0     | 0.0                   | 14,395.0              | 0.0  | 0.0     | 0.0      |
| Transport - rail                          | 10.8     | 0.0     | 0.0      | 0.0      | 10.8     | 0.0     | 0.0                   | 10.8                  | 0.0  | 0.0     | 0.0      |
| Transport - domestic air                  | 137.6    | 0.0     | 0.0      | 137.6    | 0.0      | 0.0     | 0.0                   | 137.6                 | 0.0  | 0.0     | 0.0      |
| Transport - navigation                    | 5.0      | 0.0     | 0.0      | 0.0      | 5.0      | 0.0     | 0.0                   | 5.0                   | 0.0  | 0.0     | 0.0      |
| Households                                | 1,026.2  | 1,023.4 | 0.0      | 0.0      | 0.0      | 0.0     | 2.8                   | 1,026.2               | 0.0  | 0.0     | 0.0      |
| Services                                  | 141.8    | 141.8   | 0.0      | 0.0      | 0.0      | 0.0     | 0.0                   | 141.8                 | 0.0  | 0.0     | 0.0      |
| Agriculture & Fishery                     | 486.1    | 0.0     | 154.6    | 0.0      | 331.6    | 0.0     | 0.0                   | 486.1                 | 0.0  | 0.0     | 0.0      |
| Energy Industry - Refinery                | 35.6     | 0.0     | 0.0      | 0.0      | 0.0      | 23.8    | 0.0                   | 23.8                  | 0.0  | 0.0     | 11.8     |
| Energy Industry - Other energy industries | 1,961.4  | 0.0     | 81.0     | 0.0      | 442.0    | 0.0     | 6.1                   | 529.2                 | 0.0  | 0.0     | 1,432.3  |

#### The structure of the GHG calculations for the options:

Looking a the Solar PV option we can see the structure: The first column to the left contains the data for the mitigation option. The second column contains the data for the BAU technology. the third calculate the difference between these two.

The upper box calculate the cost increase. The investment cost is levelized using a discount rate and a lifetime. The lower box calculate the GHG reduction.

In the bottom the US\$/tCO2e result is calculated.

To the right of the calculations all inputs are stated in a transparent way. Some input parameters that are similar for all options (like discount rate, energy prices, electricity prices, emission factors) are combined in an "assumption sheet".

In the "Main" sheet where all options are collected, you must decide how large the options is (number of MWs, units etc. The data gaps and how to address them:

The problem with the NDC calculation is that you need a lot of data.

All countries have made an energy balance that can be used as input. We can also get the data from ENERDATA.

The collection of policies in the countries can be used to decide on the growth factors to use in the projection to 2025/2030/2035/2050. Models like LEAP etc can be used.

First all the existing GHG reduction reports and studies in the country must be used to get data for the desired mitigation options.

For option where there is no data the information in submitted CDM and PoA projects can be used. We have collected all this useful information in the pipelines for CDM projects and Programme of Activities (PoAs) at <u>www.cdmpipeline.org</u>. Here information for all kinds of GHG mitigation options is available: Investments, how to calculate emission reductions etc.

#### GACMO summary table for the 22 GHG mitigation options in the Maldives

| Mitigation options                   | Abatement               | Unit Type             | Emission   | Units        | Investment | Annualized | Emission reduction in 2020 |            |
|--------------------------------------|-------------------------|-----------------------|------------|--------------|------------|------------|----------------------------|------------|
|                                      | costs                   |                       | reduction  | penetrating  |            | costs      | Per option                 | Cumulative |
|                                      | US\$/tonCO <sub>2</sub> |                       | t CO2/unit | in 2020      | MUS\$      | MUS\$/year | kt/year                    | fracion    |
| LED tubes for public sector          | -784                    | 1 light tube replaced | 0.015      | 70,000       | 0.0        | -0.8       | 1.1                        | 0.1%       |
| Better maintenance of motor bikes    | -413                    | All motor bikes       | 24304      | 1            | 0.0        | -10.0      | 24.3                       | 1.3%       |
| Air conditioning at resorts          | -398                    | 1 Aircondinioner      | 0.87       | 36,467       | 4.7        | -12.7      | 31.8                       | 2.9%       |
| Cooling new service buildings        | -369                    | 1 m2                  | 0.046      | 270,336      | 1.8        | -4.6       | 12.4                       | 3.5%       |
| Solar water heater                   | -323                    | 1 unit                | 24         | 102          | 0.7        | -0.8       | 2.5                        | 3.7%       |
| Efficient air conditioning           | -313                    | 1 Airconditioner      | 1.19       | 74,186       | 9.6        | -27.7      | 88.5                       | 8.2%       |
| LED tubes for street light           | -292                    | 2200 street lights    | 1505       | 1.48         | 0.1        | -0.6       | 2.2                        | 8.3%       |
| Upgrade of system efficiencies       | -260                    | All eligible Islands  | 43199      | 1            | 61.1       | -11.2      | 43.2                       | 10.5%      |
| PVs outer islands                    | -252                    | 1 kW                  | 1.22       | 12,100       | 42.4       | -3.7       | 14.7                       | 11.2%      |
| Regional waste-to-energy projects    | -228                    | 100 ton/day of waste  | 9535       | 1            | 10.4       | -2.2       | 9.5                        | 11.7%      |
| PVs with Net Meters                  | -189                    | 1 kW                  | 1.13       | 10,500       | 42.0       | -2.2       | 11.9                       | 12.3%      |
| Energy efficient refrigerators       | -158                    | 1 refrigerator        | 0.51       | 82,823       | 41.2       | -6.6       | 42.0                       | 14.4%      |
| PVs Malé Region (existing plans)     | -133                    | 1 kW                  | 1.05       | 15,000       | 45.0       | -2.1       | 15.8                       | 15.2%      |
| PVs Malé Region (additional options) | -133                    | 1 kW                  | 1.05       | 15,000       | 45.0       | -2.1       | 15.8                       | 16.0%      |
| Efficient water pumping              | -117                    | 1 household           | 0.10       | 72,470       | 14.5       | -0.9       | 7.6                        | 16.4%      |
| PVs on resorts                       | -108                    | 1 kW                  | 1.22       | 47,815       | 167.4      | -6.3       | 58.2                       | 19.4%      |
| 20 MW wind power & 25 MW LNG         | -105                    | 45 MW                 | 26502      | 1            | 97.3       | -2.8       | 26.5                       | 20.7%      |
| Thilafushi waste-to-energy project   | -68                     | A 4 MW plant          | 23061      | 1            | 57.8       | -1.6       | 23.1                       | 21.9%      |
| PVs with storage at small islands    | -52                     | 1 kW                  | 1.2        | 29,000       | 167.1      | -1.8       | 35.3                       | 23.7%      |
| LEDs for domestic lighting           | 199                     | All domestic bulps    | 8467       | 1            | 42.4       | 1.7        | 8.5                        | 24.1%      |
| Biodiesel 20% blend                  | 336                     | 20% blend             | 213000     | 1            | 0.0        | 71.6       | 213.0                      | 34.9%      |
| Bioethanol 15% blend                 | 337                     | 15% blend             | 14637      | 1            | 0.0        | 4.9        | 14.6                       | 35.7%      |
|                                      |                         |                       | Totals     | Million US\$ | 850.3      | -22.6      | 702.4                      | 35.7%      |

Total baseline emission in 2020: 1968 ktCO2-eq.

The type of mitigation options used in GACMO are similar to the ones in the CDMPipeline:

GACMO contains a sheet for each type, which then contains several sub-types

| Afforestation         |
|-----------------------|
| Agriculture           |
| Biomass energy        |
| Cement                |
| CO2 usage             |
| Coal bed/mine methane |
| Energy distribution   |
| EE households         |
| EE industry           |
| EE own generation     |
| EE service            |
| EE supply side        |
| Fossil fuel switch    |
| Forestry              |
| Fugitive              |
| Geothermal            |
| HFCs, PFCs and SF6    |
| Hydro                 |
| Landfill gas          |
| Methane avoidance     |
| Mixed renewables      |
| N2O                   |
| Solar                 |
| Tidal                 |
| Transport             |
| Wind                  |

## Mitigation options included/excluded in the MAR curve for Chile

| Threshold for smallest value on x-axis (ktCO2e/yr)   | 200  |
|------------------------------------------------------|------|
| Threshold for smallest value on y-axis (US\$/ktCO2e) | -200 |
| Threshold for largest value on y-axis (US\$/ktCO2e)  | 800  |

| Options included in MAR Curve           |             |                                                        | Options excluded in MAR Curve                      |         |                                                     |  |
|-----------------------------------------|-------------|--------------------------------------------------------|----------------------------------------------------|---------|-----------------------------------------------------|--|
| Reduction option                        | US\$/tonCO2 | Emission<br>reduction in<br>2030 per<br>option kt/year | mission<br>duction in<br>030 per<br>on kt/year     |         | Emission<br>reduction in 2020<br>per option kt/year |  |
| Efficient lighting with LEDs            | 345.66      | 504.25                                                 | New natural gas power plant                        | 2546.69 | 861.00                                              |  |
| Hydro power connected to main grid      | 333.82      | 8377.52                                                | Cogeneration in industry                           | 2371.03 | 620.50                                              |  |
| Solar water heater, residential         | 319.16      | 289.72                                                 | Shifting freight transport from road to rail (1000 | 1562.82 | 30.17                                               |  |
| Solar PVs. large grid                   | 316.19      | 6298.99                                                | Efficient electric motors                          | 296.40  | 50.16                                               |  |
| Wind turbines, on-shore                 | 288.73      | 11900.00                                               | Efficient residential airconditioning              | 295.26  | 32.13                                               |  |
| Geothermal power                        | 252.54      | 8753.50                                                | Efficient office lighting with LEDs                | 255.18  | 45.74                                               |  |
| More efficient gasoline cars            | 248.36      | 727.85                                                 | Zero tillage                                       | 198.80  | 42.86                                               |  |
| Biogas from industrial waste water      | 191.45      | 393.39                                                 | Electric cars                                      | 118.82  | 165.27                                              |  |
| New bicycle lanes                       | 173.53      | 2059.75                                                | Efficient refrigerators                            | 32.65   | 102.94                                              |  |
| Mini bydro power connected to main grid | 124 47      | 5298.00                                                | Assisted forest regeneration                       | 4.81    | 18.33                                               |  |
| REDD: Avoided deforestation             | 12 92       | 4400.00                                                | Reforestation with Silvopasture                    | 0.87    | 36.67                                               |  |
| Composting of Municipal Solid Waste     | 0.01        | 1158 30                                                | Biogas at rural farms using non-renewable fue      | -2.84   | 112.74                                              |  |
| Biogas from Municipal Solid Waste       | -0.26       | 10/0.88                                                | Nitrification inhibitors (1000 ha)                 | -67.69  | 102.70                                              |  |
| Enorgy officioney in industry           | -0.20       | 2750.38                                                | Fat supplementation in ruminants diets (%DM        | -80.50  | 0.77                                                |  |
|                                         | -1.17       | 3739.30                                                | Efficient electric grids                           | -185.27 | -6863.98                                            |  |
|                                         | -1.28       | 1800.23                                                | Solar tower CSP, with storage                      | -374.07 | 3567.31                                             |  |
| Bus Rapid Transit (BRT)                 | -125.30     | 493.88                                                 | Electric trucks                                    | -615.93 | 6783.28                                             |  |
| CCS plant                               | -164.50     | 4811.00                                                | Electric 12m buses                                 | -965.37 | 7641.60                                             |  |

## Marginal Abatement Revenue (MAR) curve for Chile



#### Example of work in a country based on GACMO

- Training of Environment, Forest and Climate Change Commission on the use of GACMO.
- Adapting the tool to Ethiopian context (energy balance, assumptions. etc.
- Mitigation options and their size.
- Using GACMO as a NDC tracking tool.
- Conduct meetings with relevant ministries and agencies to get relevant data.
- Develop a draft set of mitigation options and present them ot the sectoral working groups.
- Finalize the set of mitigation options in GACMO, and insert the result in the NDC.

#### Conclusion

GACMO is a **simple tool, easily adaptable** to a specific national context used to make analysis of mitigation options and their effects in terms of GHG emissions reduction in the context of NDC preparation or update

The GACMO calculations are transparent and easy to follow, in line with the methodologies established by the IPCC and CDM

GACMO allows to establish a Business As Usual (BAU) project 2025/2030/2050

GACMO allows to establish a mitigation scenario projection (percentage of reduction of GHG emissions in comparison with BAU)

GACMO allows you to calculate the reduction of GHG and the cost related to each mitigation option compared to a technology used as a reference

GACMO allows to "play" with the scale of application of any mitigation option to reach a global reduction target

GACMO offers a clear description of the total reduction of GHG emissions, total inversion and total annual cost