

Ministry of Environment Greenhouse Gas Inventory and Research Center

Partnership on Transparency in the Paris Agreement

Tracking Progress of the Mitigation Commitments of Nationally Determined Contributions (NDCs)

Presentation: Supporting tools to develop economy wide GHG emissions projections: GACMO Dr Aiymgul Kerimray

Mitigation specialist

UNEP Copenhagen Climate Centre

environment programme supported by WUNOPS

23. Federal Ministry

by the German Bundestag

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision

UN @

What is GACMO

Model GACMO = Greenhouse gas Abatement Cost Model

Bottom-up modelling tool for greenhouse gas emissions based on Excel

IPCC / CDM Methodologies

Developed by Jørgen Fenhann at UNEP CCC

Available for free on the UNEP CCC website GACMO tool - UNEP-CCC (unepccc.org)

GACMO is a simple tool

The tool should be able to make Business As Usual (BAU) projection to:2025/2030/2035/2050

GACMO can make a NDC with a reduction of a percentage reduction of the GHG emission compared to the BAU.

The tool should be able to calculate the GHG reduction and the cost for each mitigation option compared to the technology used in the baseline.

The tool should be able to scale the size of the mitigations option up and down.

The tool should give a clear overview of the total mitigation effort: total GHG reduction, total investment, and total annual cost.

The calculation should be transparent and easy to follow.

Steps to develop GACMO model

BAU scenario Total GHG emissions

Input data for GACMO

Growth rates of energy **GHG** emissions inventory **Energy Balance Emission factors** consumption by sectors by sectors (same year as GHG (if national emission factors (annual % change up to 2025, 2030, 2035 and (latest available year). emissions inventory year). are available). Technical and economical Key assumptions parameters of the Mitigation actions by 2025, technology/mitigation (e.g. grid emission factor, 2030, 2035, 2050. options (new technology energy prices, etc.). and baseline technology).

2050).

Mitigation options in GACMO

- There are 119 pre-defined mitigation options available in GACMO
- The user can select and adjust mitigation option applicable for the country

Annex. Mitigation options available in the GACMO tool

Туре	Reduction option	Sub-type unit	
Agriculture	Rice crop CH4 reduction	Rice crop CH4 red.(1000 ha)	
	Zero tillage	1000 ha	
	Cover crops	1000 ha	
	Nitrification inhibitors (1000 ha)	1000 ha	
	Covering slurry stores (1 slurry store)	1 slurry store	
	Fat supplementation in ruminants diets (%DM fat adde	c%DM fat added	
	Tobacco curing	100 t tobacco/yr	
	Rice husk cogeneration plants	1 MW cogeneration	
Biomass energy	Biomass power from biomass residues	1 MW CHP plant	
	Bagasse power	100 kt sugar cane/year	
CCS	CCS plant	1 MW	
Cement	Clinker replacement	1000 tonnes cement/day	
Coal bed/mine methane	Coal mine methane	10 Mm3 CMM/year	
	Efficient residential airconditioning	1000 Airconditioners	
	Efficient lighting with CFLs	1000 Bulps	
EE households	Efficient lighting with LEDs	1000 Bulps	
	Efficient lighting with LEDs replacing CFL	1000 Bulps	
	Efficient wood stoves	1000 stoves	
	Efficient charcoal stoves	1000 stoves	
	LPG stoves replacing wood stoves	1000 stoves	
	Efficient electric stoves	1000 stoves	
	Induction based cooking	1000 stoves	
	New passive home	1000 new homes	
	Efficient refrigerators	1000 refrigerators	

Approach for the calculation of emission reduction for a mitigation option

- Example of efficient lighting
- LED lamps replacing incandescent light bulbs

Approach for the calculation of emission reduction for a mitigation option

1. Estimate CO₂ emissions in the reference option (incandescent light bulbs)

 $Emissions_{reference option} (tCO_2) = \frac{Electricity_{incandescent lighting}(MWh) \times Grid emission factor(\frac{tCO_2}{MWh})}{(1 - Grid losses \%)}$

2. Estimate CO₂ emissions in the reduction option (LED lamps)

 $Emissions_{reduction \ option}(tCO_2) = \frac{Electricity_{\ LED \ lamps}(MWh) \times Grid \ emission \ factor(\frac{tCO_2}{MWh})}{(1 - Grid \ losses \ \%)}$

GACMO summary table for the 22 GHG mitigation options in the Maldives

Mitigation options	Abatement	Unit Type	Emission	Units	Investment	Annualized	Emission redu	ction in 2020
	costs		reduction	penetrating		costs	Per option	Cumulative
	US\$/tonCO ₂		t CO2/unit	in 2020	MUS\$	MUS\$/year	kt/year	fracion
LED tubes for public sector	-784	1 light tube replaced	0.015	70,000	0.0	-0.8	1.1	0.1%
Better maintenance of motor bikes	-413	All motor bikes	24304	1	0.0	-10.0	24.3	1.3%
Air conditioning at resorts	-398	1 Aircondinioner	0.87	36,467	4.7	-12.7	31.8	2.9%
Cooling new service buildings	-369	1 m2	0.046	270,336	1.8	-4.6	12.4	3.5%
Solar water heater	-323	1 unit	24	102	0.7	-0.8	2.5	3.7%
Efficient air conditioning	-313	1 Airconditioner	1.19	74,186	9.6	-27.7	88.5	8.2%
LED tubes for street light	-292	2200 street lights	1505	1.48	0.1	-0.6	2.2	8.3%
Upgrade of system efficiencies	-260	All eligible Islands	43199	1	61.1	-11.2	43.2	10.5%
PVs outer islands	-252	1 kW	1.22	12,100	42.4	-3.7	14.7	11.2%
Regional waste-to-energy projects	-228	100 ton/day of waste	9535	1	10.4	-2.2	9.5	11.7%
PVs with Net Meters	-189	1 kW	1.13	10,500	42.0	-2.2	11.9	12.3%
Energy efficient refrigerators	-158	1 refrigerator	0.51	82,823	41.2	-6.6	42.0	14.4%
PVs Malé Region (existing plans)	-133	1 kW	1.05	15,000	45.0	-2.1	15.8	15.2%
PVs Malé Region (additional options)	-133	1 kW	1.05	15,000	45.0	-2.1	15.8	16.0%
Efficient water pumping	-117	1 household	0.10	72,470	14.5	-0.9	7.6	16.4%
PVs on resorts	-108	1 kW	1.22	47,815	167.4	-6.3	58.2	19.4%
20 MW wind power & 25 MW LNG	-105	45 MW	26502	1	97.3	-2.8	26.5	20.7%
Thilafushi waste-to-energy project	-68	A 4 MW plant	23061	1	57.8	-1.6	23.1	21.9%
PVs with storage at small islands	-52	1 kW	1.2	29,000	167.1	-1.8	35.3	23.7%
LEDs for domestic lighting	199	All domestic bulps	8467	1	42.4	1.7	8.5	24.1%
Biodiesel 20% blend	336	20% blend	213000	1	0.0	71.6	213.0	34.9%
Bioethanol 15% blend	337	15% blend	14637	1	0.0	4.9	14.6	35.7%
			Totals	Million US\$	850.3	-22.6	702.4	35.7%

Total baseline emission in 2020:

1968 ktCO2-eq.

Mitigation options included/excluded in the MAR curve for Chile

Options included in MAR Curve				
Reduction option	US\$/tonCO2	Emission reduction in 2030 per option kt/year		
Efficient lighting with LEDs	345.66	504.25		
Hydro power connected to main grid	333.82	8377.52		
Solar water heater, residential	319.16	289.72		
Solar PVs, large grid	316.19	6298.99		
Wind turbines, on-shore	288.73	11900.00		
Geothermal power	252.54	8753.50		
More efficient gasoline cars	248.36	727.85		
Biogas from industrial waste water	191.45	393.39		
New bicycle lanes	173.53	2059.75		
Mini hydro power connected to main grid	124.47	5298.00		
REDD: Avoided deforestation	12.92	4400.00		
Composting of Municipal Solid Waste	0.01	1158.30		
Biogas from Municipal Solid Waste	-0.26	1949.88		
Energy efficiency in industry	-1.17	3759.38		
Landfill gas flaring	-1.28	1866.23		
Bus Rapid Transit (BRT)	-125.30	493.88		
CCS plant	-164.50	4811.00		

Options excluded in MAR Curve				
Reduction option	US\$/tonCO2	Emission reduction in 2020 per option kt/year		
New natural gas power plant	2546.69	861.00		
Cogeneration in industry	2371.03	620.50		
Shifting freight transport from road to rail (1000	1562.82	30.17		
Efficient electric motors	296.40	50.16		
Efficient residential airconditioning	295.26	32.13		
Efficient office lighting with LEDs	255.18	45.74		
Zero tillage	198.80	42.86		
Electric cars	118.82	165.27		
Efficient refrigerators	32.65	102.94		
Assisted forest regeneration	4.81	18.33		
Reforestation with Silvopasture	0.87	36.67		
Biogas at rural farms using non-renewable fue	-2.84	112.74		
Nitrification inhibitors (1000 ha)	-67.69	102.70		
Fat supplementation in ruminants diets (%DM	-80.50	0.77		
Efficient electric grids	-185.27	-6863.98		
Solar tower CSP, with storage	-374.07	3567.31		
Electric trucks	-615.93	6783.28		
Electric 12m buses	-965.37	7641.60		

Threshold for smallest value on x-axis (ktCO2e/yr)	200
Threshold for smallest value on y-axis (US\$/ktCO2e)	-200
Threshold for largest value on y-axis (US\$/ktCO2e)	800

Results of GACMO: GHG emissions projections in BAU and Mitigation scenario

• Example of use of GACMO for NDC for Lao PDR

Conclusion

GACMO is a **simple tool, easily adaptable** to a specific national context used to make analysis of mitigation options and their effects in terms of GHG emissions reduction in the context of NDC preparation or update

The GACMO calculations are transparent and easy to follow, in line with the methodologies established by the IPCC and CDM

GACMO allows to establish a Business As Usual (BAU) project 2025/2030/2050

GACMO allows to establish a mitigation scenario projection (percentage of reduction of GHG emissions in comparison with BAU)

GACMO allows you to calculate the reduction of GHG and the cost related to each mitigation option compared to a technology used as a reference

GACMO allows to "play" with the scale of application of any mitigation option to reach a global reduction target

GACMO offers a clear description of the total reduction of GHG emissions, total inversion and total annual cost

Thank you!

Aiymgul Kerimray – <u>aiymgul.kerimray@un.org</u>

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag