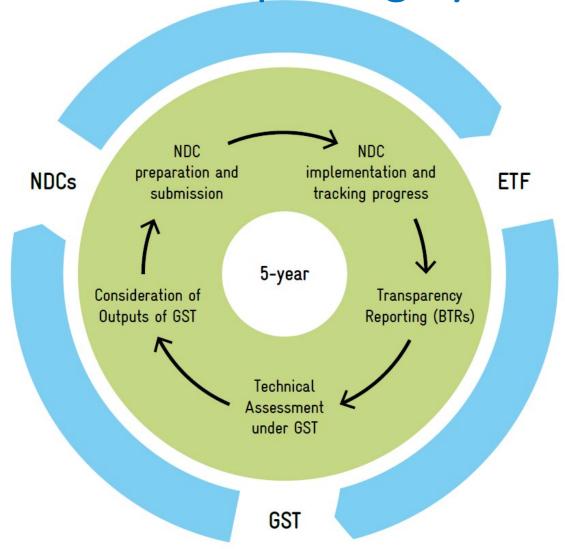
NDC Methodology & Organisation of Work

Insights to the preparation of the revised NDC for Montenegro


CBIT-GSP workshop, Almaty 25-27 July 2023
By Nebojša Jablan

Nationally Determined Contribution (NDC)

- Core element of the Paris Agreement
- Economy wide emission reduction targets
- NDCs are set by Parties and updated every 5 years → progression over time
- Highest possible ambition in the light of different national circumstances

The NDC Reporting Cycle

Source: Next steps under the Paris Agreement and the Katowice Climate Package, GIZ, 2019 (Figure 1, page 6)

2020: New/updated NDCs

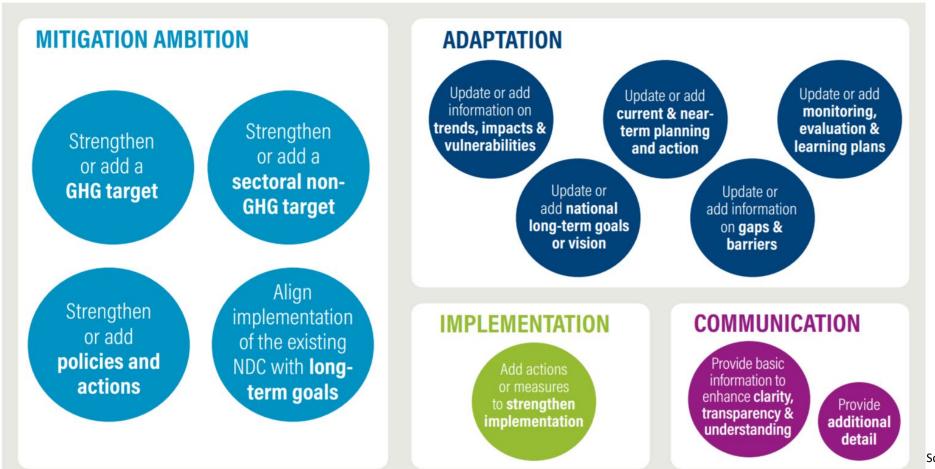
2023: Global Stocktake

2024: Enhanced Transparency

Framework to track progress

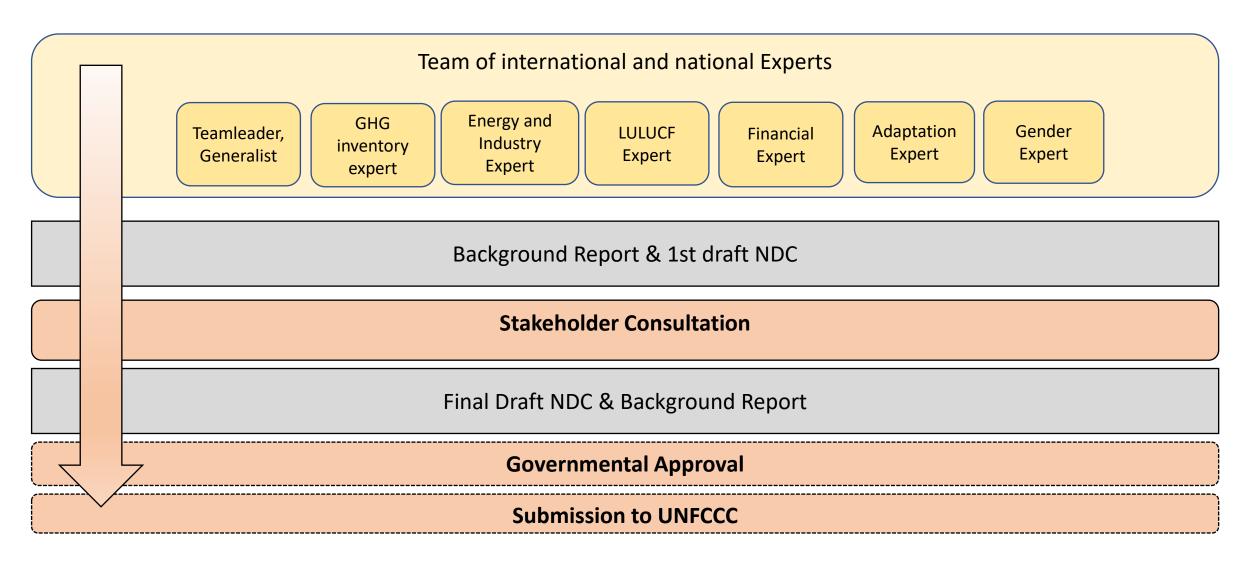
(Biennial Transparency Reports)

2025: next round of NDCs

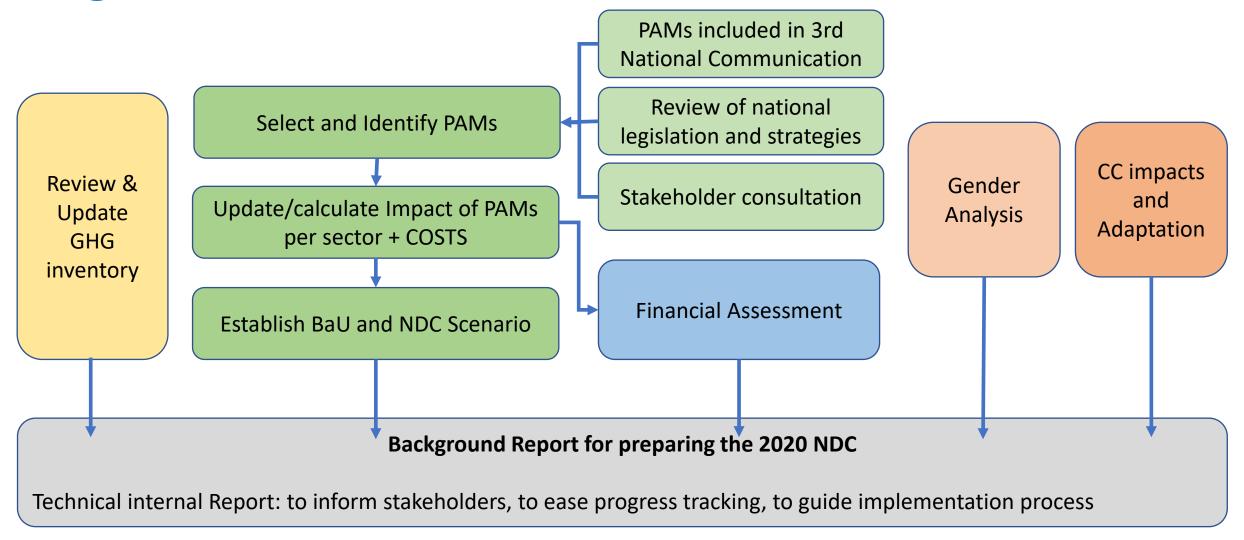

Benefits:

- Set a long-term pathway with short term goals
- Avoid lock-effects and stranded assets
- Reduce transition costs
- Build trust in a low carbon economy and society
- Opportunities for economic growth and development
- Attract climate finance and investment
- Synergies with SDGs
- Receive cross-sectoral political support

NDC Reporting Elements (4/CMA.1)


- Mitigation Targets
- Enhancement options: mitigation (ambition and/or implementation), adaptation, and/or communication
- Quantifiable information on the reference point: reference year, indicator, target, data source, national circumstances for updates
- Time frame and/or periodes for implementation
- Scope and coverage: sectors, gases, geographic coverage
- Mitigation co-benefits
- Description of planning process
- Assumptions and methodological approaches
- Fair and ambitious:
 - comparison with various indicators related to fairness (e.g. past emissions, economic development, costs, mitigation potential, national circumstances, ...
 - Comparison with various indicators related to ambition (annual emission reduction, BAU emissions, historic emission trend, ...
- Contribution towards Art. 2. of Convention: e.g. peak year, LEDS, ...
- Adaptation: vulnerability, risk assessments, adaptation goals and actions, ...

Options for Enhancement



Source: Fransen T., et.al. 2017

Process

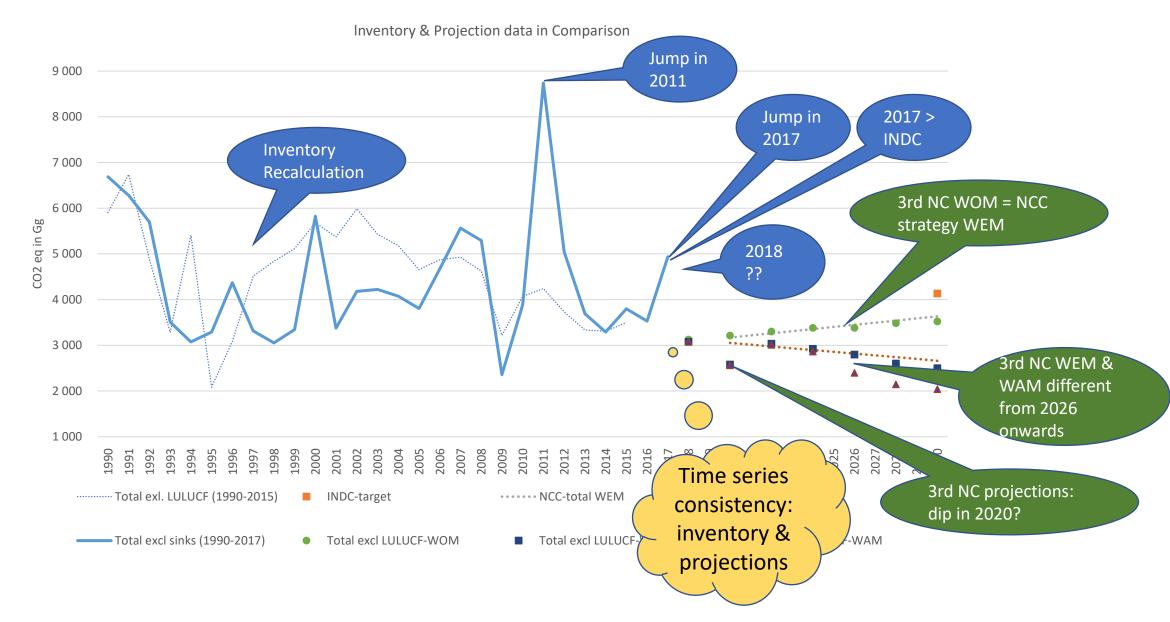
Organisation of Work

Basis for updated NDC

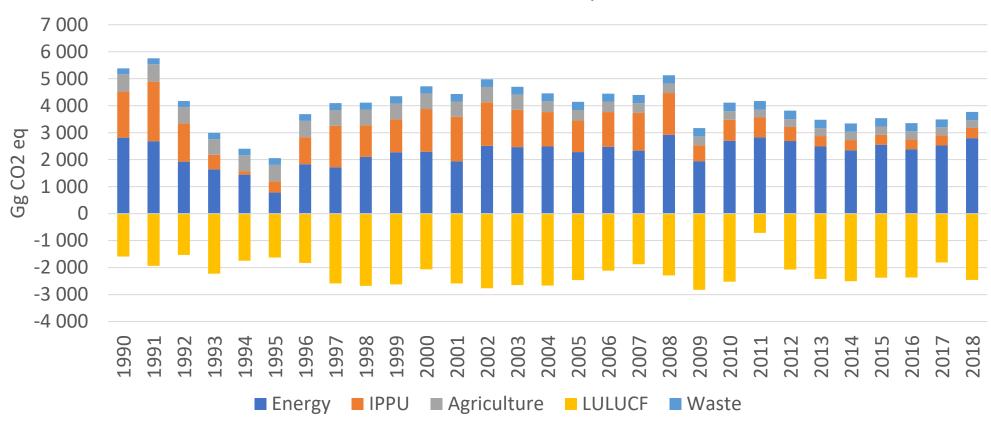
- INDC
- 3rd National Communication (2020)
- 2nd Biennial Report (2019)
- GHG inventory (1990-2017)
- Adaptation ?
- Gender study: "Women and Climate Change in Montenegro"

What is important?

- Consistency across time-series
- > Transparent documentation
- Consistent assumptions across sectors
- Consultation with stakeholders


Analysis of existing material

GHG inventory 1990-2017


Understand dips and jumps:

Analysis of existing material

Past GHG emission trend

Mitigating GHG Emissions

Consider various scenarios: With existing measures With additional measures

Mitigation Potentials

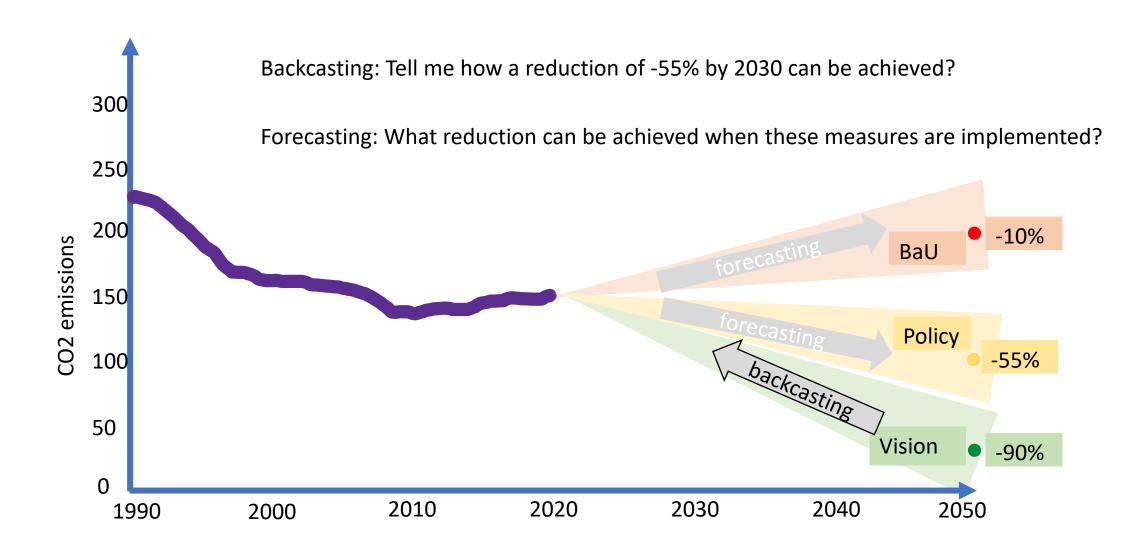
Realistic

(politically & socially feasible)

Example: PV use

Economic potential

(cost-effective, social and private costs)


Technical potential

(use of existing technological solutions)

Physical potential (theoretical possible potential, maximum)

Source: UNFCCC

Approach for Projections

GHG Emissions and Projections Energy, IPPU & Waste Sectors

Relevant national energy and industry strategies and legislation

- Law on Protection from the Negative Effects of Climate Change;
- ❖ National strategy of sustainable development until 2030;
- ❖ National plan for the use of energy from renewable sources of Montenegro;
- National strategy in the field of climate change;
- Industrial policy 2019-2023;
- Law on Energy;
- Action plan for the Energy Development Strategy 2016–2020;
- Energy efficiency action plan 2019–2021;
- National Energy and Climate Plan (NECP) under preparation.

Energy sector

- Largest source of emissions in the country;
- Only domestic source of fossil fuel is lignite, which is used in energy production and heating;
- Carbon taxation in stationary plants regulation;
- Wind power plants, small hydropower and solar rooftop plants have been built. Planned investments in big solar power plants;
- Two long-term investment programs to increase energy efficiency in public facilities (healthcare, education, social care, administration,);
- EE home subsidizing energy efficiency measures in households;
- Regulation on minimum requirements for the energy efficiency of buildings, energy certification of buildings, energy efficiency labels and requirements for eco-design of energy-consuming products.

IPPU sector

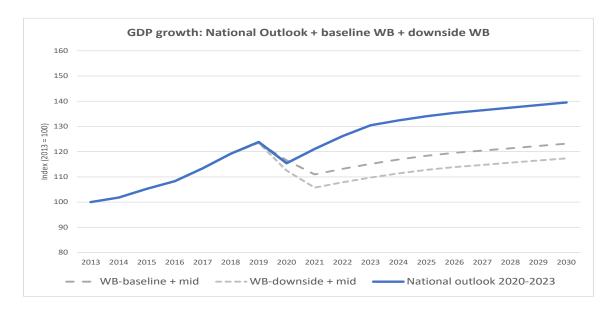
- 2 industrial plants Aluminum Smelter and Steel Mill bankruptcy;
- ❖ PFC emissions from the technological process of electrolysis at the Aluminum Plant are already decreasing, and a further decrease in production is expected, thus also GHG;
- Modernization and new plants in KAP (transfer to TPG) & technological improvements in KAP (electrolysis plant);
- A drastic increase in emissions in the product use sector. The emissions of mobile air conditioners, as well as fire distuingisher, were not calculated;
- An important source of emissions is the increase in the use of HFCs in stationary air conditioners (share in total IPPU emissions > 60%).;
- Reduction of HFCs in accordance with the new Law on Confirmation of Amendments to the Montreal Protocol on Substances that Deplete the Ozone Layer.

Waste Sector

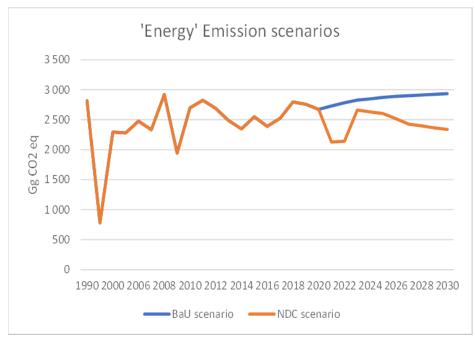
- Macroeconomic data: population
- W1: gradual reduction of biodegradable waste being landfilled
 - Calculated with IPCC FOD model, extended to 2040
 - BAU scenario: extrapolation of disposed waste based on population growth
 - NDC scenario: pathway set in EU negotiation chapter 27
 - 75% of 2010 value in 2025 and 50% in 2029 and 35% in 2019
- W2: Increase in connection rate to sewerage system
 - BAU scenario: assumed 70% by 2035
 - NDC scenario: target 97% in 2035
 - Less CH4 from septic tanks
 - Indirect N2O emissions not impacted as depending on population
 - Calculated with GHG inventory methodology, WW treatment pathways

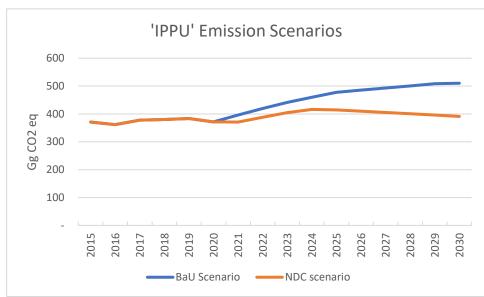
Main Policies

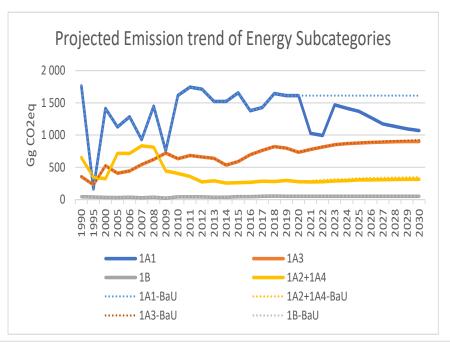
Sector	Measures	Cumulated savings					
Energy	Refurbishment of TPP Pljevlja	1178 Gg CO2eq					
	Carbon Pricing	2282 Gg CO2eq					
	New renewable power plants	557 Gg CO2 eq					
	Energy efficiency in buildings	267 Gg CO2eq					
	District heating	61 Gg CO2eq					
Transport	E- and hybrid vehicles	66 Gg CO2eq					
Industry	Uniprom KAP: overhauling and ETS	537 Gg CO2eq					
	HFC reduction	158 Gg CO2eq					
Waste	Reduction in landfilled biowaste	225 Gg CO2eq					
	Improvement to sewage system	96 Gg CO2eq					

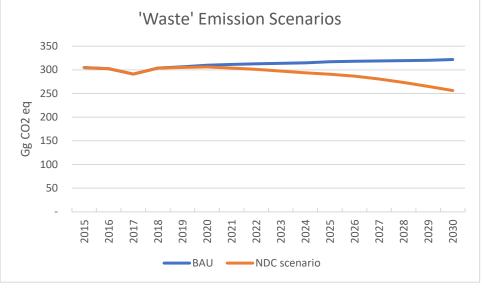

- 18 policies in total
- No policies for agriculture and forestry

Projections Methodology used in Montenegro

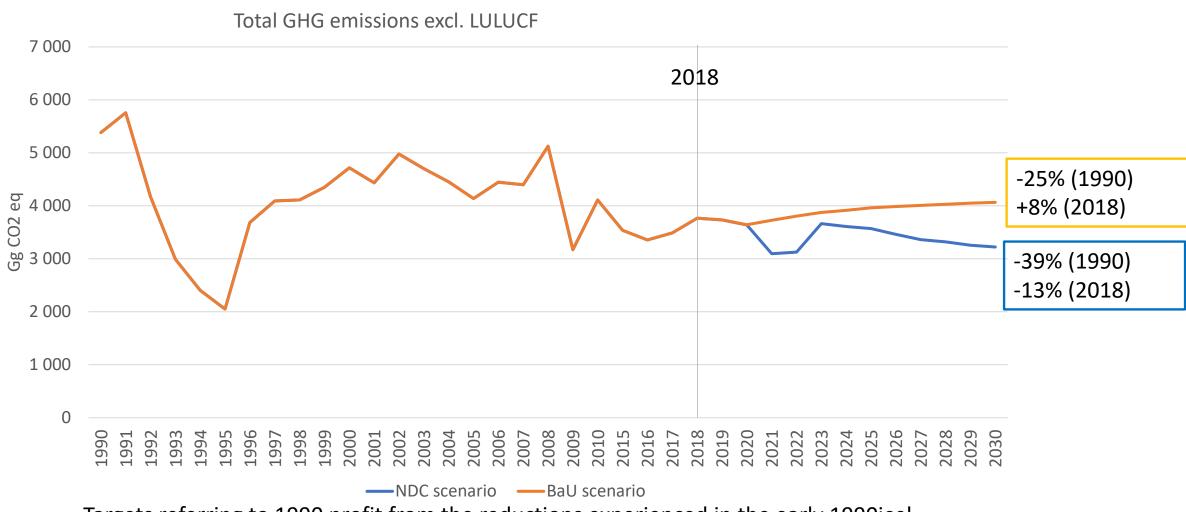

- Forecasting Approach
- Macroeconomic development: GDP and population
- Sector by sector approach:
- Definition of Driver and input parameters
- Mitigation tool developed by Aether Ltd.
 - Used for Energy and Industry
- GHG inventory methods for waste sector
- Only BAU for agriculture and forestry (lack of policies and data)
- NDC scenario & BaU scenario


Scenarios


- 2 projection scenarios: "business as usual" scenario (BaU) and NDC scenario where measures are taken into account;
- Calculation of emissions in the energy and industry sectors until 2030, for both scenarios using the mitigation software LEAP - Low Emissions Analysis Platform, i.e. a special tool prepared for the needs of the 3NC;
- Macroeconomic projections population, energy consumption and GDP;

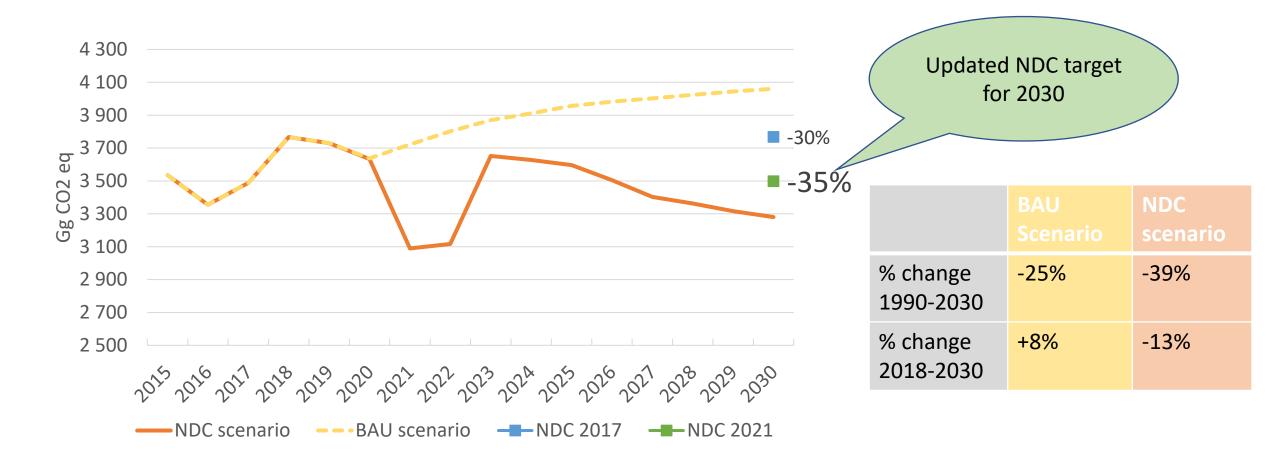


Projections of energy, IPPU and waste sector



Mitigation Tool by Aether

ethe	- °				Summary of GHG emission	s under diff	ferent	miti	ation	optio	ons an	d ecor	nomic	growth	scena	rios					
etne	00		of this sheet: ns for use:		es data from within the tool to provide a nic projection scenario in cell B9. (2) Choc	summary of the	projecti	on and s	scenarios	s. It allo	ws the u	ser to ch	oose an (conomic	growth fo	orecast a					
		ri PortalID	Include	Sector			5 2016		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
ion nomic	Scenar High	ri PortaliD	Include	Sector	Name	3.			4.9	2.9	2.5	2021	2.5	2023	2.5	2025	2026	2027	2028	2029	2
	Low							•					2.5	2.5			2	2			
wth						3.	4 2.9	4.7	4.9	2.9	2.4	2	1	1	0.5	0	0	-0.5	-0.5	-0.5	
narios	Mid	_				3.	4 2.9	4.7	4.9	2.9	2.4	2.3	2	1.75	1.5	1.25	1	0.75	0.75	0.75	
P)	Mid ca	se	< (1) Choose I	Economic projection		3.	4 2.9	4.7	4.9	2.9	2.4	2.3	2	1.75	1.5	1.25	1	0.75	0.75	0.75	
	BAU				1. Energy combustion (BAU)	2 52		2 215	2 581	2 616	2 645	2 673	2 699	2 721	2 741	2 758	2 772	2 783	2 794	2 805	
6	BAU				2. Industrial Processes (BAU)	41			203	197	215	229	243	256	270	284	290	295	301	307	
ections	BAU				3.a. Agriculture (BAU)	12			123	124	124	125	125	126	126	127	127	128	128	129	
: :O2 eq	BAU BAU				3.c LULUCF (BAU)	-60			-760	-826	-345	-951	-600 234	-254	-185	-679	-341	-45 254	-41	-264	
.02 Eq	BAU				4. Waste (BAU) Total BAU projection incl. LULUCF	20	3 210 8 2891		218 2 365	222 2 333	226 2 866	230 2 307	2 701	238 3 088	242 3 195	246 2 736	3 099	3 416	258 3 440	262 3 239	
	DAU				Total BAO projection inci. LOLOCF	chack 100	0 2 691	1,000	1.000	1.000	1,000	1,000	1,000	1,000	1 000	1,000	1,000	1,000	1,000	1,000	
					20	030 target 3667	* ####	###	3 667	3 667	3667	3 667	3667	3 667	3 667	3 667	3 667	3667	3667	3667	3
						ut LULUCF 3264		###	3 125	3 160	3 211	3 258	3 301	3 342	3 380	3 415	3 440	3 460	3 481	3 503	,
			(2) Choose Mea	asures to include (Yes)		201	5 2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
	WEM	1E_WEM	Yes		io Eco upgrade of TPP Block 1				0	0	511	511	0	33	66 📗	99			199	221	
	WEM	2E_WEM	Yes		io New renewable power plants (WEM)				0	0	0	0	0	0	0	3	0.0	46	37	29	
	WEM	3E_WEM	Yes		io District heating in Pljevlja				0	0	0.	0	0 _	2 _	3 _	5_	6.0	8	9	11	
ing	WEM	4E_WEM	Yes		io Development and implementation of e		regulat	ory fra	0	0	26	39	52	65 📗	78 📗	91					_
ures	WEM	5E_WEM	Yes		io Increased energy efficiency in public b				0	0	3	4	5	6	8	9	11.3	14	16	19	
/ I)	WEM	6E_WEM	Yes		io Financial incentives for citizens (for EE				0	0	3	4	4	4	4	4	4.3	4	4	4	
ling	WEM	7E_WEM	Yes		io Energy labeling and eco-design require	ements for energ	gy relate	d prod	33	67	29	55	81 📗	107	133						
ures	WEM	1T_WEM	Yes		io Electric cars (WEM)				0	0	0	1	1	2	2	3 5	4	7	11	16	
	WEM	8E_WEM	Yes		io Establishment and implementation of				0	0	1	2 7	3 10	12	12	12	5.7 12.4	6 12	7 12	8 12	
ded in	WEM	9E_WEM 10E WEM	Yes Yes		io Implementation of EE measures in pub io Development of transmission and dist				0	0	20	27	41	47	48	49	49.6	51	52	53	
Gg	WEM	11E_WEM	Yes		io Refurbishment of hydro power plants (griu (uec	case	0	0	201	5	10	10	10	10	10.1	10	10	10	
q	WEM	1IP_WEM	Yes		es: Uniprom KAP: electrolysis cells replace		auling (2020 - :	0	0	3	7	11	15	19	24	29	34	38	43	
l/year	WEM	1W_WEM	Yes	4. Waste	Reduce the share of bio-waste in muni				17	24	32 l	41	51	60 II	71	80					
	WEM	_			Total Net WEM				51	91	634	702	268	366	457	552	645	790	881	965	
	WEM				WEM Projection incl. LULUCF sector				2 315	2 243	2 232	1 605	2 434	2 722	2 737	2 184	2 454	2 625	2 559	2 274	
	WEM				WEM Projection excl. LULUCF sector				3 075	3 069	2 577	2 556	3 033	2 976	2 923	2 863	2 795	2 670	2 601	2 538	
		_																			
			(3) Choose Mea	asures to include (Yes)	and Exclude (No)	201	5 2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
			Yes							- 1											
ional	WAM	1E_WAM			io New renewable power plants (WAM)						0	0	0	12	13	341	332	385	376	367	
	WAM	1T_WAM	Yes		io Electric cars (WAM)						0	0	0	1	1	1	3	4	7	11	
ures		1IP_WAM	Yes		es: Uniprom KAP: Cell hibernation	forester pro					0	0 -27	-31	10 -6	18 -33	25 -45	30 -51	35 -22	40 -24	45 -47	
/ 1)	WAM	1L_WAM 2L_WAM	Yes Yes	3.c LULUCF 3.c LULUCF	Harvest limitation (part of sustainable Reduction of area subject to wildfire	Torestry program	nme)			ļ	1 38	-27 76	-31 284	720	-33 631	-45 505	-51 479	-22 638	-24 729	-4/ 463	
ng		_			•			_													
ires		3L_WAM	Yes	3.c LULUCF	Increase the share of industrial rounds						0	0	0	0	0	0	0	0	0	0	
ed in	WAM	1W_WAM	Yes	4. Waste	Reduce the share of bio-waste in muni	icipal waste + ac	aditiona	aiversi	on to rec	ycling	15	18	20	22	24	25	26	26	26	25	1
Ge	WAM	1A_WAM	Yes	3.a. Agriculture	Support for organic agricultural produc	tion				l	0	0	0	0	0	0	0	0	0	0	
9 9		2A_WAM	Yes	3.a. Agriculture	Support to manure management						1	2	3	3	4	5	6	7	8	8)
/year	WAM				Total Net WAM savings incl. LULUCF secto	r					55.0	69	278	762	658	859	825	1074	1162	874	
	WAM				Total Net WAM savings excl. LULUCF sector	or					16.6	20.0	25.2	48.7	59.6	398.5	397.4	457.5	457.1	457.6	
	WAM				Total WEM + WAM Savings incl. LULUCF se						688.9	771	546	1 128	1 116	1 411	1 470	1 864	2 043	1 838	
					Total WEM + WAM Savings excl. LULUCF s						650.5	721.9	292.9	414.3	516.9	950.5	1 042	1 248	1 338	1 422	
									$\overline{}$											1 400	_
	WAM				WAM Projection incl. LULUCF sector				2 315	2 243	2 177	1 535	2 155	1 960	2 079	1 325	1 629	1 551	1 397	1 400	


Past and Projected GHG emission

Targets referring to 1990 profit from the reductions experienced in the early 1990ies!

NDC Target Setting

Recommendations

- Have a robust and complete GHG inventory
- Seek for political engagement
- Define long-term development path & emission peak
- Develop sectoral strategies with quantified targets
- Mainstream mitigation and adaptation
- Develop implementation roadmap & monitoring mechanism
- Engage also private businesses, NGOs, civil society, academia
- Have a technical background report

Thank you!

For further information, please contact:

Nebojša Jablan

Podgorica, Montenegro

Email: njablan@gmail.com