

Partnership on Transparency in the Paris Agreement

Forestry, Fisheries and the Environment REPUBLIC OF SOUTH AFRICA

GACMO model. Solution to applied exercises.

Training workshop for Anglophone African countries: Deep dive into tracking NDC mitigation commitments under the Paris Agreement

Dr Aiymgul Kerimray **Mitigation Specialist Mitigation Analysis and Data Management** aiymgul.kerimray@un.org **UNEP Copenhagen Climate Centre**

(f) environment copenhagen programme climate centre

> supported by

Supported by:

Federal Ministry Federal Foreign Office for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Forestry, Fisheries and the Environment REPUBLIC OF SOUTH AFRICA

Exercises 1 and 2 Assumptions Grid Emission Factor and Electricity prices

24	Electricity	Isolated grids	Grid 1	Grid 2
25	US\$/kWh		0.12	
26	Grid Emissions Factor	tCO2/MW	h (=kCO2/k₩	√h)
27	Operating margin (OM)			
28	Build Margin (BM)			
29	Combined Margin (CM) Solar & Wind		0.8000	
30	Combined Margin (CM) Other		0.8000	
2.1				

Forestry, Fisheries and the Environment REPUBLIC OF SOUTH AFRICA

Exercise 3 Offshore wind

	Total GHG mitigation in	Mauritius						
2			Investment	Annual	Units	Emission	reduction i	n 2030
3				costs	penetrating	Per option	Ad	ded
4	Туре	Reduction option	Million US\$	MUS\$/year	in 2030	kt/year	kt/year	Frac.of total
121	Wind	Wind turbines, on-shore	0.0	0.0		0.00	289	5.4%
122		Wind turbines, on-shore with 24 storage	0.0	0.0		0.00	289	5.4%
123		Wind turbines, off-shore	99.3	-8.3	50	128.00	417	7.8%

Emissions reduction 128 kt/year

Costs in	Reduction	Reference	Increase
US\$	Option	Option	(RedRef.)
Total investment	1986000		
Project life	20		
Lev. investment	187464		187464
Annual O&M	29790		29790
Annual fuelcost		384000	-384000
Total annual cost	217254	384000	-166746
	_		
Annual emissions (tons)	Tons	Tons	Reduction
Fuel CO2-eq. emission		2560.0	2560.0
Other			
Total CO2-eq. emission	0.0	2560.0	2560.0
US\$/ton CO2-eq.			-65.1

1 MW Wind turbines connected to main grid (off-shore) in 2030									
Costs in	Reduction	n Reference	Increase	General inputs:	General inputs:				
US\$	Option	Option	(RedRef.)	Discount rate	7%				
Total investment	1986000			Reference electricity price	0.12	US\$/kWh			
Project life	20			CO2-eq. emission coefficient	0.80	tCO2/MW			
Lev. investment	187464		187464						
Annual O&M	29790		29790	Reduction option: Wind Powe	er				
Annual fuelcost		384000	-384000	0&M	1.50%				
Total annual cost	217254	384000	-166746	Activity	1	MW			
				Investment in Activity	1986	US\$/kW			
Annual emissions (tons)	Tons	Tons	Reduction	Capacity factor	3200	Full time h			
Fuel CO2-eq. emission		2560.0	2560.0	Electricity production	3200	MWh/ yea			
Other				Cost of electricity produced	0.068	US\$/kWh			
Total CO2-eq. emission	0.0	2560.0	2560.0						
				Reference option: No wind tu	rbines				
US\$/ton CO2-eq.			-65.1						

Forestry, Fisheries and the Environmen REPUBLIC OF SOUTH AFRICA

Exercise 4 Renewable Energy Hybrid Facilities Solar + battery storage

1	Total GHG mitigation in	Mauritius						
2			Investment	Annual	Units	Emission	reduction i	in 2030
з				costs	penetrating	Per option	Ad	ded
4	Туре	Reduction option	Million US\$	MUS\$/year	in 2030	kt/year	kt/year	Frac.of total
90	Solar	Solar water heater, residential	0.0	0.0		0.00	0	0.0%
91		<u>Solar water heater, large</u>	0.0	0.0		0.00	0	0.0%
92		Solar PVs, large grid	0.0	0.0		0.00	0	0.0%
93		Solar PVs, large grid with 24h storage	0.0	0.0		0.00	0	0.0%
94		Solar house PVs	0.0	0.0		0.00	0	0.0%
95		Solar cottage PVs	0.0	0.0		0.00	0	0.0%
96		Solar/diesel mini-grid	0.0	0.0		0.00	0	0.0%
97		Solar LED lamps	0.0	0.0		0.00	0	0.0%
98		<u>Solar PVs, small isolated grid, 100% solar</u>	1302.5	83.5	100	262.80	263	4.9%
99		Solar street lights	0.0	0.0		0.00	263	4.9%
100		Parabolic through CSP, no storage	0.0	0.0		0.00	263	4.9%
101		Solar tower CSP, with storage	0.0	0.0		0.00	263	4.9%

Emissions reduction 262.8 kt/year

202 Solar PVs, small isol	2 Solar PVs, small isolated grid, 2 MW, 100% solar								
203 Costs in	Reduction	Reference	Increase	General inputs:					
204 <mark>US</mark> \$	Option	Option	(RedRef.)	Discount rate	7%				
205 Total investment	13,025,000)		Reference electricity price	0.12	US\$/kWh			
206 Project life	20)		CO2-eq. emission coefficient	0.80	tCO2/MWh			
207 Lev. investment	1,229,468	8	1,229,468						
208 Annual O&M	35		35	Activity: Solar PV with battery					
209 Annual fuelcost		394,200	-394,200	Investment in PV	1450	US\$/kW			
210 Total annual cost	1,229,503	394,200	835,303	0&M	35	US\$/kW			
211				Capacity factor	1642.5	Full time hours			
212 Annual emissions (tons)	Tons	Tons	Reduction	Electricity production/kW	1642.5	kWh/year			
213 Fuel CO2-eq. emission	C	2,628	2,628	Electricity production/kW	4.5	kWh/day			
				Electricity consumption whitout	2.3	kWh/day			
214 Other				sun/kW					
215 Total CO2-eq. emission	C	2,628	2,628	Unit cost of batteries	187	US\$/kWh			
216				Max. battery load	20%				
217 US\$/ton CO2-eq.			318	Reinvestment in batteries	3	Times			
218				Cost of batteries	5063	US\$/kW			
219 Notes:				Size of PV	2	MW			
220 Project on the Maldives:	SREP report: To c	onvert 10 sm	all islands	Electrici produced	3285	MWh/year			
221 Each using 250-350 MW				Cost of electricity produced	0.374	US\$/kWh			
222 Islands of 2 MW Cost of	a lithium-ion batte	ery: 450 US\$/	kWh (Pike						

Forestry, Fisheries and the Environment REPUBLIC OF SOUTH AFRICA

Exercise 5 Electric vehicles

1	Total GHG mitigation in	Mauritius						
2			Investment	Annual	Units	Emission	n reduction i	in 2030
3				costs	penetrating	Per option	Ad	ded
4	Туре	Reduction option	Million US\$	MUS\$/year	in 2030	kt/year	kt/year	Frac.of tot
02	Transport	20% Biodiesel blend in all diesel	0.0	0.0		0.00	263	4.9
03		15% Bioethanol blend in all gasoline	0.0	0.0		0.00	263	4.9
04		Bus Rapid Transit (BRT)	0.0	0.0		0.00	263	4.9
05		More efficient gasoline cars	0.0	0.0		0.00	263	4.9
06		More efficient diesel cars	0.0	0.0		0.00	263	4.9
07		Natural Gas cars	0.0	0.0		0.00	263	4.9
38		Electric cars	230.1	38.0	26	25.70	289	5.4

Emissions reduction

25.7 kt/year

Costs in	Reduction	Reference	Increase	General inputs:		
				•		
US\$	Option	Option	(RedRef.)	Discount rate	7%	
Total investment	28,850,000	20,000,000	8,850,000	Annual distance	25,000	km
Project life	15	15		Activity	1,000	Cars
Lev. investment	3,167,575	2,195,892	971,682	Reduction option: Electric cars		
Annual O&M	144,250	200,000	-55,750	Investment in vehicle	25,450	US\$
Annual fuel cost	331,500	1,330,431	-998,931	Investment in charging station	1,000	US\$
Total annual cost	3,643,325	3,726,323	-82,998	Size of battery	40	kWh
				Investment in battery	60	US\$/kWh
Annual emissions (tons)	Tons	Tons	Reduction	Annual O&M	0.5%	of investment
Fuel CO2-eq. emission	1,878	3,198	1,321	Electricity consumption	9.0	km/kWh
Other				Total electricity consumption	2,763	MWh
Total CO2-eq. emission	1,878	3,198	1,321	Reference electricity price	0.12	US\$/kWh
				CO2-eq. emission coefficient	0.68	tCO2/MWh
US\$/ton CO2-eq.			-63	Emissions from electricity	1,878	tCO2
				Economic efficiency	0.15	US\$/km
Notes: Batteries: Bloom	per new energy Fina	nce 2019		Reference option: Normal gasoli	ine cars	
				Energy consumption	18.2	km/l
				Investment in vehicle	20,000	US\$
				Annual O&M	1.0%	of investment
				Gasoline price	0.07	US\$/liter

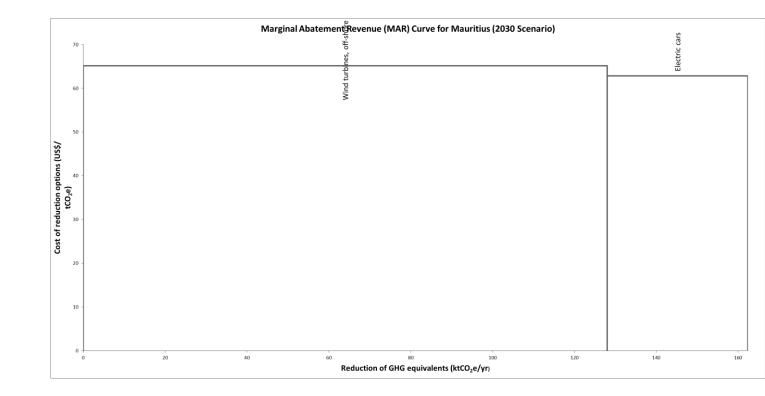
Exercise 6 Growth rates

2	Start year:	2021			
3	Growth from the start year	Anr	ual % increase	in the period	
4	Growth and multiplication factors	2021 to 2025	2025 to 2030	2030 to 2035	2035 to 2050
5	Population growth	0.34%	0.34%	0.34%	0.34%
6	GDP growth	3.00%	3.00%	2.00%	2.00%

Exercise 7 Mitigation actions in the Forestry sector

Fi	ile Home Insert Pa	age Layout Formulas	Data Review	View Au	tomate	Help A	rcGIS		
H5	9 - : 🗙 🗸	<i>fx</i> =(5*5+20*5+(1.25	;*5+2.5*5+1.25*5)+	-(5*5+10*5+5*	5))/1000				
	A		В			Н	I	J	К
1	Total GHG mitigation in	Mauritius							
2						Units	Emissio	n reduction i	n 2030
3					P	penetrating	Per option	Ad	ded
4	Туре	Reduction option				in 2030	kt/year	kt/year	Frac.of total
59	Forestry	Reforestation				0.250	0.92	1	0.0%
60		REDD: Avoided deforestat	ion				0.00	1	0.0%
61	-	Assisted forest regeneration	<u>on</u>				0.00	1	0.0%
62		Reforestation with agrofo	restry				0.00	1	0.0%
63		Reforestation with Silvopa	<u>isture</u>				0.00	1	0.0%

Emissions reduction 0.92 kt/year



Exercise 8 Comparison of mitigation actions Marginal Abatement Revenue Curve

Comparison of mitigation options available in the "Graph" sheet

From the MARC curve it can be seen that wind turbines and electric cars are effective options

Wind turbines provide most emissions reductions

Exercise 8 Comparison of mitigation actions

Options incl	uded in MAR Cu	irve		
Reduction option	US\$/tonCO2	Emission reduction in 2030 per option kt/year		
Wind turbines, off-shore	65.14	128.00		
Electric cars	62.84	34.34		
		Options exclu	Ided in MAR Curve	
		Reduction option	US\$/tonCO2	Emission reduction in 2020 per option kt/year
	Reforestation)	-15.45	0.92
	Solar PVs, sr	mall isolated grid, 100%	solar -317.85	262.80